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Preface

Elementary matrix algebra has now become an integral part of the mathematical background
necessary for such diverse fields as electrical engineering and education, chemistry and sociology,
as well as for statistics and pure mathematics. This book, in presenting the more essential mate-
rial, is designed primarily to serve as a useful supplement to current texts and as a handy refer-
ence book for those working in the several fields which require some knowledge of matrix theory.
Moreover, the statements of theory and principle are sufficiently complete that the book could
be used as a text by itself.

The material has been divided into twenty-six chapters, since the logical arrangement is
thereby not disturbed while the usefulness as a reference book is increased. This also permits
a separation of the treatment of real matrices, with which the majority of readers will be con-
cerned, from that of matrices with complex elements. Each chapter contains a statement of perti-
nent definitions, principles, and theorems, fully illustrated by examples. These, in turn, are

followed by a carefully selected set of solved problems and a considerable number of supple-
mentary exercises.

The beginning student in matrix algebra soon finds that the solutions of numerical exercises
are disarmingly simple. Difficulties are likely to arise from the constant round of definition, the-
orem, proof. The trouble here is essentially a matter of lack of mathematical maturity, and
normally to be expected, since usually the student’s previous work in mathematics has been
concerned with the solution of numerical problems while precise statements of principles and
proofs of theorems have in large part been deferred for later courses. The aim of the present
book is to enable the reader, if he persists through the introductory paragraphs and solved prob-
lems in any chapter, to develop a reasonable degree of self-assurance about the material.

The solved problems, in addition to giving more variety to the examples illustrating the
theorems, contain most of the proofs of any considerable length together with representative
shorter proofs. The supplementary problems call both for the solution of numerical exercises
and for proofs. Some of the latter require only proper modifications of proofs given earlier;
more important, however, are the many theorems whose proofs require but a few lines. Some are
of the type frequently misnamed “obvious” while others will be found to call for considerable
ingenuity. None should be treated lightly, however, for it is due precisely to the abundance of
such theorems that elementary matrix algebra becomes a natural first course for those seeking
to attain a degree of mathematical maturity. While the large number of these problems in any
chapter makes it impractical to solve all of them before moving to the next, special attention
is directed to the supplementary problems of the first two chapters. A mastery of these will do
much to give the reader confidence to stand on his own feet thereafter.

The author wishes to take this opportunity to express his gratitude to the staff of the Schaum
Publishing Company for their splendid cooperation.

FRraNK AYRES, JR.
Carlisle, Pa.
October, 1962
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Chapter 1

Matrices

A RECTANGULAR ARRAY OF NUMBERS enclosed by a pair of brackets, such as

2 3 7 1 3 1
(a)|: ] and by 12 1 41},

1 -1 5 4 7 @
and subject to certain rules of operations given below is called a matrix. The matrix (a) could be

. . . . : 2¢+3y+Tz =0
considered as the coefficient matrix of the system of homogeneous linear equations x— y+5z =0

or as the augmented matrix of the system of non-homogeneous linear equations {2;i3§: zg
Later, we shall see how the matrix may be used to obtain solutions of these systems. The ma-
trix (b) could be given a similar interpretation or we might consider its rows as simply the coor-
dinates of the points (1,3,1), (2,1,4), and (4,7, 6) in ordinary space. The matrix will be used
later to settle such questions as whether or not the three points lie in the same plane with the
origin or on the same line through the origin.

In the matrix

Q11 Q10013 nnn... Qqp
Qo1 Qoo Bog e v .. Aon
.y
(o P e 2y Ay,

the numbers or functions @ are called its elements. In the double subscript notation, the first
subscript indicates the row and the second subscript indicates the column in which the element
stands. Thus, all elements in the second row have 2 as first subscript and all the elements in
the fifth column have 5 as second subscript. A matrix of m rows and n columns is said to be of

order "m by n'" or mxn.

(In indicating a matrix pairs of parentheses, ( ), and double bars, H
used. We shall use the double bracket notation throughout.)

, are sometimes

At times the matrix (1.1) will be called "the m xn matrix [aij]” or "the mxn matrix 4 =
[“ij]”' When the order has been established, we shall write simply '"the matrix 4.

SQUARE MATRICES. When m =n, (1.1) is square and will be called a square matrix of order n or an
n-square matrix.

In a square matrix, the elements a4, as,, ..., a,, are called its diagonal elements.

The sum of the diagonal elements of a square matrix 4 is called the trace of 4.



2 MATRICES [CHAP. 1

EQUAL MATRICES. Two matrices 4 = [aij] and B = [bq;j] are said to be equal (4=B) if and only if
they have the same order and each element of one is equal to the corresponding element of the
other, that is, if and only if

aij:bij’ G=1,2,...,m; j=1,2,...,n)

Thus, two matrices are equal if and only if one is a duplicate of the other.

ZERO MATRIX. A matrix, every element of which is zero, is called a zero matrix. When A4 is a zero

matrix and there can be no confusion as to its order, we shall write 4 = 0 instead of the m xn
array of zero elements.

SUMS OF MATRICES. If 4 = [aij] and B = [bij] are two m xn matrices, their sum (difference), 4 +B,

is defined as the m xn matrix C = [c;:] » where each element of C is the sum (difference) of the
corresponding elements of 4 and B. Thus, 4B = [aij + bij] .

1 2 3 2 3 0
Example 1. If 4 = and B = then
0 1 4 -1 2 5

1+2 2+3 340 3 5 3
A+B = :l =
0+(—1) 1+2 4+5 -1 3 9
1-2 2—-3 3-0 -1 -1 3
A_B - . ]
0—(—-1) 1-2 4-5 1 -1 -1

Two matrices of the same order are said to be conformable for addition or subtraction. Two

matrices of different orders cannot be added or subtracted. For example, the matrices (a) and
(b) above are non-conformable for addition and subtraction.

and

The sum of k matrices 4 is a matrix of the same order as 4 and each of its elements is %
times the corresponding element of A. We define: If } is any scalar (we call k a scalar to dis-
tinguish it from [%] which is a 1x1 matrix) then by k4 = Ak is meant the matrix obtained from
A by multiplying each of its elements by k.

1 -2
Example 2. If 4 = [ ] then
2 3
1 -2 1 -2 1 -2 3 —6
A+4+4 = [ :|+|: ]+ ] = = 34 = A.3
2 3 2 3 2 3 6 9
and
-5 ~5(—2 - 1
_5A:[<1> 5¢ >]:[5 0]
=5(2) —-5(3) —-10 -15
In particular, by ~4, called the negative of A, is meant the matrix obtained from A by mul-

tiplying each of its elements by —1 or by simply changing the sign of all of its elements. For
every A, we have 4 +(—A4) = 0, where 0 indicates the zero matrix of the same order as A.

Assuming that the matrices 4,B,C are conformable for addition, we state:
(ay A+ B = B+ 4 (commutative law)
by A+ B+Cy = (A+BYy+ C (associative law)
(¢) k(A+B)y = kA + kB = (A+BYk, ka scalar
(d) There exists a matrix D suchthat A +D = B.

These laws are a result of the laws of elementary algebra governing the addition of numbers
and polynomials. They show, moreover,

1. Conformable matrices obey the same laws of addition as the el'Ements of these matrices.
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MULTIPLICATION. By the product AB in that order of the 1xm matrix 4 = [a44 aip @15 ... a;5] and

r—- —

b1
boy
b
the mx1 matrix B = | °* | is meant the 1x 1 matrix C = [a11b1q + @10 bos + - - + aypby,].
2
bll
2
. K
That is, (@13 @1o ... aip) | . | = [@ubia+asobor + - -+ aipbpy] = k% a,b,. |-
bmy

Note that the operation is row by column; each element of the row is multiplied into the cor-
responding element of the column and then the products are summed.

1
Example 3. (@) [2 3 4] [—1] = [2)+3(=D+4(] = [17]
2

~2
(b) [3 -1 4] [6] = [-6-6+12] =0

3

By the product AB in that order of the m xp matrix 4 = [aij] and the p xn matrix B = [b4;]
is meant the m xn matrix C = [c;;] where

>

cij = Gi3byy +ag boj+ oo+ aip bp; = kéla,;kbkj o @G=1,2,...,m; j=1,2,...,n).
Think of A as consisting of m rows and B as consisting of » columns. In forming C = AB
eachrow of 4 is multiplied once and only once into each column of B. The element Cij of C is then

the product of the ith row of 4 and the jth column of B.

Example 4.
211 @y b b a11b1g ta15bgy  ag1bip tagsbas
11 b2
A B = gy Qoo l:b 5 ] = @91 b1y tagpbor aoibis tansbos
21 bo2
az1 Ggo ag1 by +agoboy agybig tagobo,

The product AB is defined or 4 is conformable to B for multiplication only when the number
of columns of 4 is equal to the number of rows of B. If 4 is conformable to B for multiplication
(AB is defined), B is not necessarily conformable to 4 for multiplication (B4 may or may not be

defined). See Problems 3-4.
Assuming that 4, B, C are conformable for the indicated sums and products, we have
ey A(B+C) = AR+ AC (first distributive law)
(fy A+BYC = AC+BC (second distributive law)
(g) ABCY = (ABYC (associative law)
However,

(hy AB # BA, generally,
(i) AB = 0 does not necessarily imply 4 =0 or B =0,
(7> AB = AC does not necessarily imply B = C.

fl

See Problems 3-8.
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PRODUCTS BY PARTITIONING. Let 4= [ai]-] be of order mxp and B = [bij] be of order pxn. In
forming the product AB, the matrix 4 is in effect partitioned into m matrices of order 1xp and B
into n matrices of order px1. Other partitions may be used. For example, let 4 and B be parti-
tioned into matrices of indicated orders by drawing in the dotted lines as

(pixnq) | (paxny)

(myxpy) | (myxpy) | (myxps) e T i

A = |—=——d—e e b= : B = |(poxny) | (poxns)
(maxp1) | (Maxpo) | (myxps) —+

(paxny) | (paxng)

By | By

Ay, | A, | 4 .

or A = [}:Li_{_jQ_{———la—], B = | Boy | Bys
Azs ) Aop | Aos B. g

831 | 832

In any such partitioning, it is necessary that the columns of A and the rows of B be partitioned
in exactly the same way; however m,,my, nq, n, may be any non-negative (including 0) integers
such that my+ my, = m and n.+ n, = n. Then

AB - [A11811+A12821+A13331 A11Bio + A10Bop + A15B5,]| [:CM Cm] - C
A21B1y + A55Boy + ApgBgy A21312+A22322+A23B:}2_ Cor Coy

210 1
Example 5. Compute 4B, given A = |3 2 0 and B = |2
1 01 2
Partitioning so that
211!0 11110
A11 Axo 3910 Bi1 By 2110
= i T and B = g R I
Aoy Ago 10 Boy Bgo 2312
(AllBll +A10B51  Ag1Byo +A15By,
| 421811 + ApoBoy Az1Bis +AsoByy

]+ fe o B OB
}]+[1][2 3 1] [1 o] _8]+[1][z]

20 R O I B O O
11 +[23 1 [o]+{2] [3 4 2][2] 3422

See also Problem 9.

we have AR

tl

11—
—
(=]
[ S—
[\-I
o

o

Let A,B,C, ... be n-square matrices. Let 4 be partitioned into matrices of the indicated
orders
(Paxpa) | (expa) - | (PaxPe) An Ao Ao
(pox p1) :(pQXPQ) : : (p2x ps) _ Aoy Ags ... Ags
T T T T T
....... IR IRER AR
—_—— —_——— _..1.___...
(psx p1) | (psxp2) | --- | (psX ps) A31 Asy ... Ass

and let B, C, ... be partitioned in exactly the same manner. Then sums, differences, and products
may be formed using the matrices A;4, 415, -..; By, Bio, «oo; Ciq, Coo, ...
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SOLVED PROBLEMS

1+3 2+(—4) —-1+1 0+2 4 -2
4+1 0+5 2+0 1+3 = 5
) 7

2+2 —5+(-2) 1+3 2+(-1

-3 2+4 —-1-1 0-2 -2 6 -2 =2
4-1 0-5 2—-0 1-3 = 3 -5 2 -2
2—2 —5+2 1-3 2+1 0 -3 -2 3

—_ _ —~ o~
_ o o )
< - = <

) —
l ﬂmusw > =

T ph)—llwphb—ﬂ | I

I | oMM o N

o N UoN | [

{ | — DN — DN =

i i N - O [ ]

N = O N _

| I Ty M 1 +

reweuwL N resrar
I I N W M W
| 1 I |

rT_I_II'__1'-‘ DU N T R

N = DWWyl 0o R

T | |
o N -0 N —_ W N
oo o 1l ]
11
|
R e w 1 I
11
D wWwo
N o !

12 -3 -2 p g
.If A=|3 4| and B=| 1 -5]|, find D=|r s| suchthat A+B-D = 0.
5 6 4 3 t u

1-3—p 2-2—9¢ ~2-p —q 00
If A+B-D = |3+1—-r 4—-5-s]| = 4—r —1—-s{ = {0 0}, —2—p=0 and p=-2, 4—r=0

5+t+4—t 6+3—u 9—t 9— 00

-2 0
and r=4, ..... Then D = 4 —1] = A+8B.

9 9
2
@ [4586]] 3
-1
3
@y | 3| {4 5 6]
—1
4 -6 9 6
@ [t 23)]o-7 10 7
5 8 —11 —8

(1(4)+2(0)+3(5) 1(—8) +2(=T7) +3(8) 1(9)+2(10)+3(—11) 1(6)+2(T)+3(=8)]
(19 4 —4 —4]

PEER ; _ [rav+3@+a@] _ (20
15 6|3 LY +5(2)+63)F |29

©) [1 - _ 1(3) +2(1) +1(=2) 1(—4)+2(5)+1(2) - 3 8
4 4(3)+0(1)+2(-=2) 4(—4)+0(5)+2(2) 8 —12

2 -1 1
. Let 4 0 1 2]. Then
1 01

- 2 -1 1]j2 -1 1 5 -3 1 3 R 5 -3 1|2 -1 1 11 -8 0
A =10 12[l0 12]=12 14 and A% = A%4 =2 1 4[]0 1 2] = 8 -1 8
1 011 01 3 —1 2 3 —-12j1 01 8 ~4 3

The reader will show that A° = 4. 4% and A42.4% = 4%. 4%,

lay+5@)+6(-1] =[17]

2(4) 2(5) 2(6) 8 10 12
[3(4) 3(5) 3(6)| = 12 15 18

1(4) —1(5) —1(86) -4 -5 —6

i

[

w

o w
(L
1

N W
SRS

i
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5. Shothhat:

2 2
(@ k2=1 @ik (bkj+ ckj) - k2:1 aikbkj * k2:1aikckj'
b a: - = a;.:,
( )izijzl Y jz1i=1 ¥
3 s S (S apb
¢ a; bpiers) = ( a; Yeys .
( )k=1 ’bk(h:1 ERCH j het Boy ik ORI Ch]
2
(a) k§1 aik<bkj +ckj) = ail(b1j+clj) + aiz(sz+02j) = (ai1b1j+ai2b:zj) + (ai1‘31j+ai262j)
2 2
= kzzla,bkbk] + kglaikckj.
2 3 2
(®) ,21 -Ela’ij = .21 (@jqta;,ta;) = (a1 o190 +ag3) + (azs + ago t agg)
1= = 1=
J = (a11 t ag1) + (a2 + agn) + (a3 + aog)
3 s s s 3
= a. + a. + a . = a:-..
i=1 1 g=g 2 =, '3 j=1i=1 Y

This is simply the statement that in summing all of the elements of a matrix, one may sum first the
elements of each row or the elements of each column.
P 3 2
(c) ,El @ ( h2=1 bepenp) = ,Ela—;k(bklclj T bhppCos T bpaCes)
= “i1(51101j + biocoj+ bigess) + ajolbrrcyj + bopeo it bogcsj)
= (a41b1y + ajobor)esj + (@4abio t ajoboo)eoj + (@i1b1a + ajnbas)eg;
2 2 2
= (2 ajpb it (2 ajpbpodegi + (2 agxb ;
(k::l. ikbRr1)c1s (kzlazk ko) Cod (kzlam ka)Csd
2

3
= Z (2 apbmen;

6. Prove: If 4 = [aij] is of order mxn and if B = [bij] and C = [Cij] are of order nxp, then A(B + C)

= AB+ AC.
The elements of the ith row of 4 are a;,, a;,, ..., a;, and the elements of the jth column of B +C are
b1j+ €15, b2j+ Cojs wers bnj teuj. Then the element standing in the ith row and jth column of A(B + C) is

7 7 n
a“il(blj+clj) + aiQ(b2j+CQj) +...0+ ain(bﬂ]'+cnj) = ]3:_1aik(bkj+ckj) = kz—laikbkj +k§10’ikckj’ the sum of
the elements standing in the ith row and jth column of AB and AC.

7. Prove: If 4= [a;;] is of order mxn, if B = (5;;] is of order nxp, and if C = [e;;] is of order pxg,
then A(BC) = (4B)C.

The elements of the ithrow of 4 are ajy, ajo, ..., a4, and the elements of the jth column of BC are hE bap, Cps
=1

p p
}El thChj R h§1 bnhchj; hence the element standing in the ith row and jth column of 4 (BC) is
P P 7 p
ain X bincnj + aip 3 boncy; * o tajy, X bupoy; = 2 aip(Z bracy)
'p n n n 7
= 2, (Zawbmey; = (X aipbpney + (X agbrodesj to ¥ (2 appbrplep;

This is the element standing in the ith row and jth column of (4B)C; hence, A(BC) = (4B)C.

8. Assuming 4, B, C,D conformable, show in two ways that (A +B)Y(C+D) = AC + AD + BC + BD.

Using (e) and then (f), (4 +BY(C+D) = (A+B)YC +(A+B)D = AC +BC +AD +BD.

Using (f) and then (e), A +BYCC +Dy = A(C+DYy+ B +D) AC +AD +BC +BD
AC +BC +AD +BD.
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9. (a)

- 100 .
100i1lpg1 o 1 00|t oo j1 10 0] [31 2] 412
010200 1]=1010[o1o0o|+|2{(312] =|o1o0|+[6 24| =]|6324
00 1/3]|-=—- 00 1{lo o 1] |3 001| |936 9317
L 312 - -
1010010 GJf1 010010 0] o[t o] (o] 0] |
o2'o00/ooflotlooloo 0 2]lo 1
el W il | Dl Ep i S
00/30(00{[o0i1o0j0o0f _ 3 ol[1 o
® 1o 010 4iooflooiosiool| " [o] [04][03] [o]
ooTo 015 0 ooTo oTzo (0] [0] 5 o2 o
LOO[OOIOGiL00|OO|O3J I 0 6}lo 3
100 0 0 0
020 0 0 0
_loos3 0o 0o o
00012 0 0
000 010 0
000 0 018
11100 o0lolft 2134516] [ [t 1t 2 1 1][3 4 5 1 1} [e
21'000'ol[23!45 6!7 2 1|2 3 2 1|4 5 6 2 1|7
SN Mt i . -
oy 0013 1 210113415678 _|[312][34 312567 [312][8
“looj12110/4 5167819 1214 5fft 2167 8f[t2 1o
00'/01 1lo[[9 817 6514 01 1]98jlot11|res]|o1 1[4
V___}__v_ﬁ_kf _4__’___71__
0o orooo0i1f|g7654;1] | [tl81] (116 5 4] (1]-(1] |
[3 5[7 9 11][131 3 5 7 9 11 13
_ |1 33][35 37 34][at]| _ |31 33 35 37 39 41
20 22([24 26 28||30 20 22 24 26 28 30
13 13]]13 13 13]]13] 13 13 13 13 13 13
[ [8 716 5 4][1]] 8 7 6 5 4 1
X1 T Q11Y1+ Qoo
. : y1 = biazy + b1z
10. Let { %o = ao1y + asoy, be three linear forms in y, and y, and let be a
_ yo = boizq +boozy
Xz = Q31Y1 t A35Y0

linear transformation of the coordinates (y,, y,) into new coordinates (z4, z,). The result of applying
the transformation to the given forms is the set of forms

%y = (@p1biq + a10b01)21 + (@11byo + a10bo0) 20
o = (@o1byg +asobo)zg + (aoypbyio +ag0bsy) 20
%3 = (@g1bys +agoby)zy + (agibip + ag0bos)zs
X1 Q11 Q12
Using matrix notation, we have the three forms {x,| = |ag, oo Y1 and the transformation
Yo

5 5 X3 Q31 Gao
[yl] = [ 11 12} I:Zi . The result of applying the transformation is the set of three forms

Yo bos bosl|zo
X1 Q11 G190
_ by1 biof|zg
Xo | = |@21 Goo b 3
21 Ooo]l22
X3 a3 Cgo

Thus, when a set of m linear forms in n variables with matrix 4 is subjected to a linear trans-
formation of the variables with matrix B, there results a set of m linear forms with matrix C = AB.
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SUPPLEMENTARY PROBLEMS

1 2 -3 3 -12 4 12
11. Given 4 ={5 0 2|, B =14 2 5], and C =|0 3 2},
1 -1 1 2 0 3 1 -2 3
4 1 -1 -3 1-5
(a) Compute: 4+B =19 2 7|, A-C = 5 -3 o0
3 -1 4 0 1 -2
-2 -4 6
() Compute: —24 =[-10 0 —4|, 0-B =0
-2 2 =2

12.

13.

14.

15.

16.

17.

18.

19.

20.

(c) Verify: A+B~-C) = (A+B)-C.
(d) Find the matrix D such that A+D = B. Verifythat D = B—A4 = —4 —B).

-

1 -1 1 1 23 -11 6 -1
Given 4 =|-3 2 —1| and B =2 4 6|, compute 4B =0 and BA =|—22 12 —al. Hence, AB#BA
-2 1 0 12 3 -11 6 -1
generally.
» y »
1-3 2 1 410 2 1 -1 -2
Given 4 =12 1-3|, B =12 11 1|, and C =]3 —2 —1 —1|, show that 4B = AC. Thus, AB = AC
4 -3 —1 1 -2 12 2-5 -1 0
does not necessarily imply B = C.
11 1] [ 13 Lo s 4
Given 4 =|2 0 3|, B =| 0 2|, and C = - , show that (AB)C = A(BC).
2 0-2 1
3 -1 2 -1 4
Using the matrices of Problem 11, show that A(B+C) = AB + AC and (4+B)C = AC + BC.

Explain why, in general, (4+BY = A4°% 24B + B? and 42—~ B (A —~B)(A+B),

2 -3 -5 -1 3 5 2 -2 —4
Given 4 =|~1 4 5|, B =| 1 -3 -5, and C =|-1 3 4,
1 -3 —4 -1 3 5 1 -2 -3

(@) show that 4B =BA =0, AC=4, CA = C.
(b) use the results of (@) to show that ACB = CBA, A —B” = (A—B)(A+B), A+ BY = A% + B2.

Mo .
Given 4 = [(L) i]' where i2 = —1, derive a formula for the positive integral powers of 4.

0 1f

. 10 01 0 -1 -1 0 i 0 - 0
Show that the product of any two or more matrices of the set [0 1:|, [_1 0], [1 0], [ 0 _1], [0 —i]’ [ 0 i]'

0 - , 0 ‘| is a matrix of the set.
-z 0 i 0

Given the matrices 4 of order mxn, B of order nxp, and C of order rxgq, under what conditions on P, q,

and r would the matrices be conformable for finding the products and what is the order of each: (@) ABC,
(b)Y ACB, (c) A(B+C)?

Ans. (@) p=r; mxgq O)Yr=n=q;, mxp (eYr=n,p=gq; mxgqg

Ans. A" =1, A, -1, —A according as n = 4p, 4p+1, 4p+2, 4p+3, where [ = ‘[1 0]
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21. Compute 4B, given:

[1 011 1010 5 1 0
@ A =011 and B:O_lJl_(l Ans. |1 2 0
0 011 1110 110
- [ 10 -,
|1 03 o1 4 -2 6
by A = 01‘2] and B = e ns. o 5
i 15 &
—12l00 00101 0 0 4 1
01,00 oo'20 0020
() A =|~—+—-=| and B =|——+—- Ans
00101 1000 0100
0 012 2 01100 2200

22. Prove: (a) trace (A+B) = trace A + trace B, (b) trace (kA) = k trace 4.

y1 = 21 %2z Y1 1 2
= — + 1 -2 1 1 -2 1 Zz
23. I {xl - yzl +2y2 ? and dy, = 224 —z, , verify [il] - [2 1_3] ol = [2 : 3] 2 -1 [Zl]
Xo Y1 TYo — 93 ¥ 9221 + 32, 2 ¥a 9 3(l%2
_ —zq + Tzo
T -2z, — 62|

24.1f 4 = [a;;] and B = [b;;] are of order mx n and it C = [c;;] is of order n X p, show that (4+B)C = AC + BC,
] ¥ v

|
!

25. Let 4= [“ij] and B = [bjk]' where (i =1,2,...,m;j=1,2,...,p; k=1,2,...,n). Denote by Bj the sum of
B1
7 BQ

the elements of the jth row of B, that is, let Bj = kZ:lb]-k. Show that the element in the ith row of 4:] °
By
is the sum of the elements lying in the /th row of AB. Use this procedure to check the products formed in

Problems 12 and 13.

26. Arelation (such as parallelism, congruency) between mathematical entities possessing the following properties:

(i) Determinative Either a is in the relation to b or a is not in the relation to b.

(ii) Reflexive a is in the relation to a, for all a.

(iii) Symmetric If @ is in the relation to b then b is in the relation to a.

(iv) Transitive If a is in the relation to b and b is in the relation to ¢ then a is in the relation to c.

is called an equivalence relation.

Show that the parallelism of lines, similarity of triangles, and equality of matrices are equivalence
relations. Show that perpendicularity of lines is not an equivalence relation.

27. Show that conformability for addition of matrices is an equivalence relation while conformability for multi-
plication is not.

28. Prove: If 4, B, C are matrices such that AC = C4 and BC = CB, then (4B + BA)C = C(AB t BA).



Chapter 2

Some Types of Matrices

THE IDENTITY MATRIX. A square matrix 4 whose elements aj; = 0 for i>j is called upper triangu-

lar; a square matrix 4 whose elements aij =0 for i< is called lower triangular. Thus

(a1, Ao g amw
0 a5y an Qon
0 O ag; ... agy| is upper triangular and
| 0 0 0 Ann
-511 0 0 W
Gy Apy 0 0
Gy, Qg gy ... O is lower triangular.
| %n1 Cna2 Qng %nn |
[, 0 0 0]
0 a, O .
The matrix D = 0 0 ay; ... 0 |, which is both upper and lower triangular, is call-

ed a diagonal matrix. It will frequently be written as

D = diag(ay, @y, g5, .-+, Q)

See Problem 1.

If in the diagonal matrix D above, @;;=ayp= ... = a,, =k, D is called a scalar matrix; if,
in addition, k=1, the matrix is called the identity matrix and is denoted by I,. For example
1 00
I, - [é (1’] and I, = |o1o0
001

When the order is evident or immaterial, an identity matrix will be denoted by I. Clearly,

I,+I,+... topterms = p.1, = diag(p,p,p,...,p) and P-rr.. to p factors = /. Identity ma-

1 2 3
trices have some of the properties of the integer 1. For example, if 4 = [4 5 6]’ then I,. 4 =

=A.1, = 1,41, = A, as the reader may readily show.

10
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SPECIAL SQUARE MATRICES. If 4 and B are sq]tare matrices such that AB = B4, then 4 and B are

called commutative or are said to commute.
matrix, it commutes with itself and also with

If A and B are such that AB = —BA, thd

A matrix 4 for which Akﬂ = A, where
+1
the least positive integer for which A4 =

If 5 =1, sothat 4° = 4, then 4 is call

A matrix 4 for which 47 - 0, where p i
least positive integer for which Ap =0, then

is a simple matter to show that if A is any n-square
l,.
See Problem 2.

* matrices 4 and B are said to anti-commute.

k is a positive integer, is called periodic. If % is
A, then A is said to be of period k.

ed idempotent.

See Problems 3-4.
a positive integer, is called nilpotent. If p is the
4 is said to be nilpotent of index p.

See Problems 5-6.

]

THE INVERSE OF A MATRIX. If 4 and B are squpre matrices such that 4B = BA = I, then B is call-

ed the inverse of 4 and we write B = A" (B
inverse and we may write 4 = B,

equals 4 inverse). The matrix B also has 4 as its

12 3}] 6 -2 -3 100
Example 1. Since |1 3 3]|-1 1 0] = o 1 0| = I. each matrix in the product is the inverse of
1 2 4]j-1 0 1 001
the other.

We shall find later (Chapter 7) that not
here, however, that if 4 has an inverse then

If A and B are square matrices of the
then (AB)Y™ = B™. 4™, that is,

I. The inverse of the product of ty
verse order of these inverses.

every square matrix has an inverse.
that inverse is unique.

We can show
See Problem 7.

. . 1 —1 .
same order with inverses 4~ and B respectively,

vo matrices, having inverses, is the product in re-

See Problem 8.

A matrix 4 such that 4% = is called i volutory. An identity matrix, for example, isinvol-
utory. An involutory matrix is its own inverse.

|

THE TRANSPOSE OF A MATRIX. The matrix o
columns of an mxn matrix 4 is called the tr

example, the transpose of A4 = 123 is
4 5 6
and jth column of A stands in the jth row an

If A"and B are transposes respectively g

(@) (Y = 4

In Problems 10 and 11, we prove:
II. The transpose of the sum of two
(A+ By

See Problem 9.

f |order nxm obtained by interchanging the rows and

|

spose of A4 and is denoted by A"(4 transpose). For
1 4
25
3 6

A= . Note that the element a;:in the ith row

i ith column of A"

f A and B, and if k is a scalar, we have immediately

and by (kAY = kA

matrices is the sum of their transposes, i.e.,
A+ B’

)
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and
III. The transpose of the product of two matrices is the product in reverse order of their
transposes, i.e.,
(A4BY = B .4
See Problems 10-12.

SYMMETRIC MATRICES. A square matrix 4 such that A'= A is called symmetric. Thus, a square

matrix A = [aij] is symmetric provided a;; = a;;, for all values of i and j. For example,

1 2 3
A=12 4 -5| is symmetric and so also is k4 for any scalar k.
3 -5 6

In Problem 13, we prove

IV. If 4 is an n-square matrix, then 4+ A" is symmetric.

A square matrix A such that A'= —4 is called skew-symmetric. Thus, a square matrix A4 is

skew-symmetric provided a;; = —ay; for all values of i and j. Clearly, the diagonal elements are
0-23
zeroes. For example, 4 =] 2 0 4| is skew-symmetric and so also is k4 for any scalar k.
-3 -4 0

With only minor changes in Problem 13, we can prove

V. If A is any n-square matrix, then 4 - 4" is skew-symmetric.

From Theorems IV and V follows

VI. Every square matrix 4 can be written as the sum of a symmetric matrix B = 5 (4+4)
and a skew-symmetric matrix € = 3(4- 4. See Problems 14-15.

THE CONJUGATE OF A MATRIX. Let o and b be real numbers and let i =+/=1; then, z = a+bi is

called a complex number. The complex numbers a+b: and a- bi are called conjugates, each
being the conjugate of the other. If z = a+ bi, its conjugate is denoted by z = a+ bi.

If z,=a+bi and z,=7%, =a-bi, then z, =3z, = a- bi = a+bi, that is, the conjugate of
the conjugate of a complex number z is z itself.

If zy=a+bi and z,=c+di, then
(1) 3+ zp = (a+c) + (b+d)i  and  ZF 2 = (atc) - (b+d)i = (a-bi) + (c~di) = 7 + %,

that is, the conjugate of the sum of two complex numbers is the sum of their conjugates.

(i) z4-2o = (ac-bd) + (ad+be)i and z;°z, = (ac—~bd) - (ad+be)i = (a-biYc-di) = 7;-7,,

that is, the conjugate of the product of two complex numbers is the product of their conjugates.

When 4 is a matrix having complex numbers as elements, the matrix obtained from A by re-
placing each element by its conjugate is called the conjugate of 4 and is denoted by 4 (4 conjugate).

1+ 2 i _ 1-2 -~
Example 2. When A4 = then A4 = A
3 2-3 3 2+ 38

If A and B are the conjugates of the matrices 4 and B and if k is any scalar, we have readily
() (4 = 4 and &y Ay = kA

Using (i) and (ii) above, we may prove
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VII. The conjugate of the sum of two matrices is the sum of their conjugates, i.e.
(A+B) = 4+B.
VIII. The conjugate of the product of two matrices is the product, in the same order, of
their conjugates, i.e., (AB) = A4-B.
The transpose of A is denoted by Z(A conjugate transpose). It is sometimes written as A*.
We have

IX. The transpose of the conjugate of 4 is equal to the conjugate of the transpose of
A, ie., (AYy = (4).

Example 3. From Example 2

_ -9 ) 1+2i 3 . 1-2 3 -,
4y = 1-2 3 while A4 = % and (4) = g = (A)
—i  2+3i i 2-3 ~-i  2+3i

HERMITIAN MATRICES. A square matrix 4 - [a,' ] such that A= 4 is called Hermitian. Thus, 4
is Hermitian provided a;; = a;; for all values of 7 and j. Clearly, the diagonal elements of an
Hermitian matrix are real numbers.

1 1-i 2

Example4. The matrix 4 = {1+ 3 i | is Hermitian.

2 -i 0

Is kA Hermitian if £ is any real number? any complex number?

A square matrix 4 = [aw] such that A= -4 is called skew-Hermitian. Thus, 4 is skew-
Hermitian provided a; ij = —@j; for all values of i and j. Clearly, the diagonal elements of a

skew-Hermitian matrix are elther zZeroes or pure imaginaries.
i 1—-7 2

3i i| is skew-Hermitian. Is k4 skew-Hermitian if & is any real

Example 5. The matrix 4 = | -1~
-2 i 0

number? any complex number? any pure imaginary?

By making minor changes in Problem 13, we may prove
X. If 4 is an n-square matrix then 4+ A4’ is Hermitian and A - A’ is skew-Hermitian.

From Theorem X follows
XI1. Every square matrlx A with complex elements can be written as the sum of an

Hermitian matrix B =3(4 +A’) and a skew-Hermitian matrix C = (4 - A ).

DIRECT SUM. Let 4,, 4,, ..., As be square matrices of respective orders my, my, ...,ms. The general-

ization
1 0 0
4 = OAQ 0 = diag(4y, 4, ..., 45)
0 0 . Ay

of the diagonal matrix is called the direct sum of the 4;.
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1 2 -1
Example6. Let A4,=[2] 4,= 1 2] and As=12 0o 3.
3 4

4 1 ~2
20000 O
01200 0
03400 O

i A, A, A5 1 iag (A4, Ao Ag) =

The direct sum of A4,,4,, A5 is diag(4,, 4,5, 43) 0001 2 -1
00020 3
00041 -2

Problem 9(b), Chapter1, illustrates

XIl. If A =diag(4,, 4, ..., 4) and B =diag(B,, B,, ..., By), where 4; and B; have
the same order for (i = 1,2, ..., s), then AB =diag(4,8,, A,B,, ..., 4;B;).

SOLVED PROBLEMS

a, 0 ... O byy bio ... byy @y1byy @y by, o ag by,
0 ay ... O by by ... b Gpob Gp0b ceer Gpob
1. Since 22 21 22 271 _ 22%21 2222 22Y2n ) the product A.B of
0 0 anm | |om1 bmo - bap Opmbms Gpmbnz o Gnpbpy
an m-square diagonal matrix A4 = diag(a,,, duy, ..., @py) and any mxs matrix B is obtained by multi-

plying the first row of B by a,,, the second row of B by a,,, and so on.

2. Show that the matrices [Z b] and [Z, d] commute for all values of a, b, ¢, d.
a C
. a bl|c d ac+bd ad+be c dl|la b
This follows from [b a] [d C] = [bc+ad bd+ac] = [d C] [b a].
2 -2 -4
3. Show that | -1 3 4| is idempotent.
1 -2 -3
2 -2 —4 2 -2 -4 2 -2 -4
AQ:-134—134=_—134:A
1 -2 =3 1 -2 -3 1 -2 -3

4. Show that if AB =4 and BA = B, then 4 and B are idempotent.

ABA = (ABYA = A-A = A% and ABA = A(BA)Y = AB = A; then A* - 4 and 4 is idempotent. Use BAB to
show that B is idempotent.
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1 1 3
5. Show that 4 =| 5 2 6| is nilpotent of order 3.
-2 -1 -3
1 1 38l 1t 1 3 0 0 0O 0 o off1 1 3
£ =15 26|l5 2 6/=|3 3 9| ana £2-24-13 3 o|ll 5 2 6| -0
~2 -1 -3|]|-2 ~1 -3 ~1 -1 -3 -1 -1 -3|]-2 -1 =3

6. If A is nilpotent of index 2, show that A(/+A4) = A for n any positive integer.

Since 4% =0, A= A*= .. -A"=0. Then A(+AY' = A(ltnd)= Atnd - 4.

7. Let 4, B, C be square matrices such that AB =] and CA = . Then (CAHB = C(AB) sothat B =
C. Thus, B=C= A" is the unique inverse of 4. (What is B™'9)

8. Prove: (ABy* = B™A™.
By definition (4B (AB) = (ABY(ABY" = I. Now

B 4aAB - B U 4yB - BB - BLp _ |
and ABB Ay = ABBHYAT - A4t - g

By Problem 7, (ABy" is unique; hence, 4By - B4t

9. Prove: A matrix 4 is involutory if and only if (/— A)(+ 4) = 0.

Suppose (I-A)(I+4) = I-A4* = 0; then 42 = and 4 is involutory.
Suppose 4 is involutory; then 42 =1 and (I~AY(+A) = I-A2 = ]_] = 0.

10. Prove: (A+B)Y = 4+ B.

Let 4 =[a;;] and B = [5;;]. We need only check that the element in the ith row and jth column of
A’ B’ and (4 +BY are respectively aj. bjj. and aj; + bj;.

11. Prove: (ABY = BA.

Let 4 = [a;;] be of order mxn. B = [2;5] be of order nxp ; then C = AB - [ci;] is of order mxp. The
n
element standing in the ith row and jth column of AB is ¢j = kz_iaiko bkj and this is also the element stand-

ing in the jth row and ith column of (4BY.

The elements of the jth row of B are bij, ij, bnj and the elements of the ith column of 4" are ai,,
@i2. ..., a;. Then the element in the jth row and ith column of B4’ is
7 n
2 e = 2 apby = o

Thus, (ABY = BX"

12. Prove: (ABCY = CBA.

Write ABC = (4B)C. Then, by Problem11, (ABCY = {(4B)C} = C'(AB)’ = C'BA’.
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13.

14.

15.

16.

SOME TYPES OF MATRICES [CHAP. 2

Show that if A4 = [ai]-] is n-square, then B = [bij] = A+ A is symmetric.
First Proof.

The element in the ith row and jth column of 4 is aj; and the corresponding element of 4"is aji; hence,
b,;j = @3+ aj;. The element in the jth row and ith column of 4 is a;; and the corresponding element of A'is
a;;; hence, bji = aj +aj;. Thus, bij = b;; and B is symmetric.

Second Proof.

By Problem 10, (A+AY = A'+(4Y = A'+A4 = A+ 4 and (4 +4") is symmetric.

Prove: If A and B are n-square symmetric matrices then 4B is symmetric if and only if 4 and B
commute.

Suppose 4 and B commute so that AB = BA. Then (ABY=B4'=BA = AB and AB is symmetric.

Suppose AB is symmetric so that (4BY = AB. Now (ABY = BA" = BA; hence, AB = BA and the ma-
trices 4 and B commute.

Prove: If the m-square matrix A is symmetric (skew-symmetric) and if P is of order mxn then B =
PAP is symmetric (skew-symmetric).

If A is symmetric then (see Problem 12) B = (PAPY - PA(P’Y = PA'P = PAP and B is symmetric.

If A is skew-symmetric then B = (PAPY = —PAP and B is skew-symmetric.

Prove: If A and B are n-square matrices then 4 and B commute if and only if A ~ k[ and B -kl
commute for every scalar k.

Suppose 4 and B commute; then 4B = BA and

|

(A=ED(B-kl) = AB —k(A+B)+ K1
BA —kA+BY+ KT = (B-=kD(A—kD

1l

Thus, A —kl and B -kl commute.
Suppose 4 —kI and B —kI commute; then
(A-kIyB-kIy = AB —k(A+B)+ K1
= BA—~kA+BY+FI = (B—EkIy(A4—kD

AB = BA, and 4 and B commute.
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17

18.

19.

20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31

SUPPLEMENTARY PROBLEMS

. Show that the product of two upper (lower) triangular matrices is upper (lower) triangular.

Derive a rule for forming the product B4 of an mxn matrix B and 4 = diag(a; 1, ass, ...
Hint. See Problem 1.

y Gy )

Show that the scalar matrix with diagonal element k& can be written as k7 and that k4 = kIA = diag(k,k,...,k) A
where the order of / is the row order of 4.

’

If A is n-square, show that A¢~Aq = Aq-A¢7 where p and ¢ are positive integers.
2 -3 -5 -1 3 5

(a) Showthat 4 = |—-1 4 5| and B = 1 —3 —5| are idempotent.
1 -3 —4 -1 3 5

(b) Using 4 and B, show that the converse of Problem 4 does not hold.

If 4 is idempotent, show that B =I—4 is idempotent and that AB = BA = 0.
122
(@) I A = |2 1 2|, showthat 4°— 44 — 5] = o.
22 1
2 13
() If 4 = [1 -1 2|, show that 4° — 24 —~ 94 = 0. but A% — 24 — oI # o.
1 21
-1 -1-1J? 0 1 0]3 0 1 o0}*
Show that 0 1 0 = -1 -1 -1 = 0 0 1 = ].
0 0 1 0 -1 -1 -1
1 -2 -6
Show that 4 = {—3 2 9| is periodie, of period 2.
2 0 -3
1 -3 -4
Show that -1 3 4| is nilpotent.
1 -3 -4
1 2 3 -2 —1 -6
Show that (@) 4 = 3 2 0] and B = 3 2 9| commute,
—1 -1 -1 —1 -1 —4
112 2/3 0 -—1/3
by A = 2 3 1| and B =|-3/5 2/5 1/5| commute.
-1 2 4 7/15 —1/5 1/15

Show that 4 = [1 :i] and B = [1 _i] anti-commute and (4+ BY2 = A2 + B2,

Show that each of 01 s 0 N N ¢ 0 anti-commutes with the others.
10 i 0 0 —i

Prove: The only matrices which commute with every n-square matrix are the n-square scalar matrices.

- (a) Find all matrices which commute with diag(1, 2, 3).

(b) Find all matrices which commute with diag(aq4, aso, ..
Ans. (a)diag(a,b,c) where a,b, ¢ are arbitrary.

5 Bun).
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32.

33.

34.

35.

36.

37.

38.

39.

40.

41.

42.

43.

44.

45.

46.

47.

48.
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1 2 3 3 -2 —1
Show that (a) 2 5 7| is the inverse of |-4 1 —1
-2 —4 -5 2 0 1
1000 1 0 00
2 10 0}. . -2 1 00
b) 43210 is the inverse of 0-2 10
-2311 §-1-11

o

1 2| ]la b 1 1 2 —2 1
= i i . Ans.
Set [3 4] [C d] [0 1] to find the inverse of [3 ] ns [3/2 _1/2]

Show that the inverse of a diagonal matrix 4, all of whose diagonal elements are different from zero, is a

diagonal matrix whose diagonal elements are the inverses of those of A and in the same order. Thus, the
inverse of /, is In'

0 1-1 4 3 3
Show that A = |4 =3 4| and B =|—-1 0 --1] are involutory.
3 -3 4 —4 —4 -3
10 0 0
I 0 I. 0
Let 4 = 01 0 0f 2 by partitioning. Show that A% = = I4.
ab-1 0 Aps —Isp 0o I,
c d 0 -1

Prove: (a) (A7) = 4, (b) (kA = kA", (¢) (Aﬁ)’: (A')i'> for p a positive integer.

Prove: ABCY' = C*B"*4"*. Hinz. Write ABC = (AB)C.

Prove: (a) (A'l)‘1 =4, () kA )'1 = %A'l, ©) (Ab)'1 = (A'l)¢> for p a positive integer.
Show that every real symmetric matrix is Hermitian.

Prove: (a) (A)= A, (b) A+B)=A+B, (c) kA)=k A, () @AB)=4B.

1 1+i 2+3i

Show: (@) 4 = |1-¢ 2 —i is Hermitian,

[2-3; i 0

[ 1+i 2-3i

-1+ 21 1 is skew-Hermitian,
—-2-3; -1 0

(b B

(¢) iB is Hermitian,

(dy 4 is Hermitian and B is skew-Hermitian.
If A is n-square, show that (a) A4” and 4”4 are symmetric, (b) A+A°, AA’, and A4 are Hermitian.
Prove: If H is Hermitian and 4 is any conformable matrix then (Z Y HA is Hermitian.

Prove: Every Hermitian matrix 4 can be written as B+ iC where B is real and symmetric and C is real and
skew-symmetric.

Prove: (a) Every skew-Hermitian matrix 4 can be written as 4 = B+iC where B is real and skew-symmetric
and C is real and symmetric. (b) A°4 is real if and only if B and C anti-commute.

Prove: If A and B commute so also do 4 * and B%, 4” and B”, and 4" and B”.

Show that for m and n positive integers, A™ and B"™ commute if 4 and B commute.
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49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

n [n i Aol I AT et
Al A nA n n-1
Show (a) = 2 | (b |0 A 1] =]o A nA
0 A 0 A 0 0 A 0 b

Prove: If 4 is symmetric or skew-symmetric then 44" = A4 and AQ are symmetric.

p

-1
Prove: If A is symmetric so also is a4 +bA¢) +...+gl where a,b,...,g are scalars and p is a positive

integer.
Prove: Every square matrix 4 can be written as 4 = B+C where B is Hermitian and C is skew-Hermitian.
Prove: If 4 is real and skew-symmetric or if 4 is complex and skew-Hermitian then ;4 are Hermitian.

Show that the theorem of Problem 52 can be stated:
Every square matrix 4 can be written as 4 =B +;C where B and C are Hermitian.

Prove: If 4 and B are such that AB =4 and BA = B then (a) B4'=4" and 4'B'= B, (b) 4"and B are
idempotent, (¢) 4 = B =1 if A has an inverse.

If 4 is involutory. show that (/+4) and 3(/—4) are idempotent and SAd+AY- Sd-4) = 0.

If the n-square matrix 4 has an inverse A, show:
oy e -1 I - T
(@ @Y=yt ) @yt=4aT (@) @yt
Hint. (a) F'rom the transpose of A4 = I, obtain (A_l)' as the inverse of 4”.

Find all matrices which commute with (a) diag(1,1.2.3), (b) diag(1.1,2,2).

Ans. (a) diag(A4.b,c), (b) diag(4.B) where 4 and B are 2-square matrices with arbitrary elements and b, ¢
are scalars.

If Ay Ao, ... A5 are scalar matrices of respective orders My, Mgy, ...,mg, find all matrices which commute
with diag(4,. 4o, ..., 4g).
Ans. diag(B,. B,.....By) where By, B, ..., B; are of respective orders m,, mo, ....mg With arbitrary elements.

If AB = 0. where 4 and B are non-zero n-square matrices. then 4 and B are called divisors of zero. Show
that the matrices 4 and B of Problem 21 are divisors of zero.

If A =diag(4,,4o. ..., Ag) and B = diag(B4, By, ..., B;) where A; and B; are of the same order, (i = 1,2,
...,8), show that

(@) A +B = diag(4,+B,;, 4,+B,, .., A5+ By)

by AB = diag (41 By, AoBs, ..., AgBs)

(c) trace AB = trace A;B; + trace A,B, + ... + trace AgBg.

Prove: If A and B are n-square skew-symmetric matrices then 4B is symmetric if and only if 4 and B commute.
Prove: If 4 is n-square and B = r4 +sl, where r and s are scalars, then 4 and B commute.

Let A and B be n-square matrices ‘and let rq, rp, s1, so be scalars such that riSo # rps1. Prove that €y =
rnA+s1B, Cp=r,A+soB commute if and only if 4 and B commute.

Show that the n-square matrix 4 will not have an inverse when (a) 4 has a row (column) of zero elements or
(b) A hastwo identical rews (columns)or (c¢) 4 has arow (column) which is the sum of two other rows (columns).

If A and B are n-square matrices and 4 has an inverse, show that
A+BYATA-B) = A-BATU4+B)



Chapter 3

Determinant of a Square Matrix

PERMUTATIONS. Consider the 3! = 6 permutations of the integers 1,2, 3 taken together
(3.1) 123 132 213 231 312 321
and eight of the 4! = 24 permutations of the integers 1,2, 3,4 taken together

1234 2134 3124 4123

(3.2) 1324 2314 3214 4213

If in a given permutation a larger integer precedes a smaller one, we say that there is an
inversion. If in a given permutation the number of inversions is even (odd), the permutation is
called even (odd). For example, in (3.1) the permutation 123 is even since there is no inver-
sion, the permutation 132 is odd since in it 3 precedes 2, the permutation 312 is even since in
it 3 precedes 1 and 3 precedes 2. In (3.2) the permutation 4213 is even since in it 4 precedes
9, 4 precedes 1, 4 precedes 3, and 2 precedes 1.

THE DETERMINANT OF A SQUARE MATRIX. Consider the n-square matrix

Q14040845 +-- T
3.3) A - Apq Qoo Qo3 - Qop
Ay Qpo Opg -+ Oy
and a product
(3.4) aj_jl asz asjs anjn

of n of its elements, selected so that one and only one element comes from any row and one
and only one element comes from any column. In (3.4), as a matter of convenience, the factors

have been arranged so that the sequence of first subscripts is the natural order 1,2, ...,n; the

sequence ji, jo ---, j, Of second subscripts is then some one of the n! permutations of the inte-

gers 1,2,...,n. (Pacility will be gained if the reader will parallel the work of this section be-

ginning with a product arranged so that the sequence of second subscripts is in natural order.)
For a given permutation jy, j,, ..., j, of the second subscripts, define €; ; ; =+l or -1

according as the permutation is even or odd and form the signed product

(3.5) Cirdo e dn B1h F2dp - Onjy

By the determinant of A, denoted by |Ai is meant the sum of all the different signed prod-
ucts of the form (3.5), called terms of |4, which can be formed from the elements of 4; thus,

(3.6) lA' = %671]2}4 @yj, G2j, -+ Gnj,

where the summation extends over p=n! permutations jj,...j, of the integers 1,2,...n.

The determinant of a square matrix of order n is called a determinant of order n.

20
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DETERMINANTS OF ORDER TWO AND THREE. From (3.6) we have for n=2 and n=3,

Q11 Qyp
3.7 = €10 @11802 + €51 G10G0q = Q11899 — Q49089
As1 Qoo
and
Q11 Q40 G3
(3.8) Qo1 Qoo Qog = €193 G11059833 + €1g0 01100305, + €p1a G150y, Ggg
Q31 A3, Agzg + S51 G100og0ny + E€g1p 150G 0y + Egpy Gyglp, gy
= 11020053 — Q11053030 -~ Q1509 Agg
t Q12053051 v Q13091035 — Q1302903
= @11(Go0053 — Go30g0) — Qyo(Qoy gy — Aoz agy) + 013(81030 — apoagy)
oy Qog Qo1 Gog o1 Qg2
= Q11 - Q43
Qgo  Ggg Q31 Qag Az Qg
Example 1.
(a)12|_14 23 = 4-6 = -2
3 4| 7 h -
2 -1
b = 20— (-1)3 = 0+3 = 3
(®) 3 0| (-1
3
2 5 01 11 10
(¢) |1 01 = 2| - 3 + 5
10 20 21
210
= 2(0-0-1-1) — 3(1-0 — 1-2) + 51-1 — 0-2) = 2(-1) - 3(-2) + 5(1) = 9
2 -3 -4
@ |t 0 -2} = 2{0(-6) ~ (-2)(-5)} — (~3){1(-6) — (=20} + (-4){1(~5) — 0-0}
0 -5 -6

= —-20 - 18 + 20 = -18

See Problem 1.

PROPERTIES OF DETERMINANTS. Throughout this section, 4 is the square matrix whose determi-
nant |A! is given by (3.6).

Suppose that every element of the ith row (every element of the jth column) is zero. Since
every term of (3.6) contains one element from this row (column), every term in the sum is zetro
and we have

I. If every element of a row (column) of a square matrix A4 is zero, then \A’ = 0.

Consider the transpose 4 of 4. It can be seen readily that every term of (3.6) can be ob-
tained from 4’ by choosing properly the factors in order from the first, second, ... columns. Thus,

II. If 4 is a square matrix then |A’\ = |A}; that is, for every theorem concerning the rows
of a determinant there is a corresponding theorem concerning the columns and vice versa.

Denote by B the matrix obtained by multiplying each of the elements of the ith row of A by
a scalar k. Since each term in the expansion of ’B, contains one and only one element from its
ith row, that is, one and only one element having % as a factor,

Thus,
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III. If every element of a row (column) of a determinant IA] is multiplied by a scalar k, the
determinant is multiplied by %; if every element of a row (column) of a determinant \A\ has k as
a factor then £ may be factored from ‘A\ . For example,

ay, kay, Qq3 Q13 Q10 Q13 Q11 Q1o Q13
ayq kayy asg = klas @y agg =

az1 kagy agg Qg1 Qgo Qgg kag, kag, kagg

Let B denote the matrix obtained from A4 by interchanging its ith and ({+1)st rows. Each
product in (3.6) of |A| is a product of |B| and vice versa; hence, except possibly for signs,
(3.6) is the expansion of |B|. In counting the inversions in subscripts of any term of (3.6) as a

term of |B|, i before i+1 in the row subscripts is an inversion; thus, each product of (3.6) with
its sign changed is a term of |B| and |B| = — |A| Hence,

IV. If B is obtained from A by interchanging any two adjacent rows (columns), then |B| =

-4l
As a consequence of Theorem IV, we have

V. If B is obtained from 4 by interchanging any two of its rows (columns), then }B‘ = -‘A|.

| ‘ VI. If B i‘s obtained from A by carrying its ith row (column) over p rows (columns), then
Bl = (-1y? 14].

VII. If two rows (columns) of 4 are identical, then |A| =0.

Suppose that each element of the first row of A is expressed as a binomial a; = 51]' + 15,
(j=1,2,...,n). Then

Ml = Segs g, (G teag)asgaaiy .ty
= 3 gy DG 0g gt B €4 G € G5, Gag e g
biy bis byg ... biy €11 Ci2 Ca3 Cin
Aoy Qoo QAog Aop, Aoy Qoo Upg Aon
= +
Ap1 Ao Gpg Anp Apq Apo Upg Ann
In general,

VIIL. If every element of the ith row (column)of A4 is the sum of p terms, then |4| can
be expressed as the sum of p determinants. The elements in the ith rows (columns) of these

p determinants are respectively the first, second, ..., pth terms of the sums and all other rows
(columns) are those of 4.

The most useful theorem is

IX. If B is obtained from 4 by adding to the elements of its i th row (column), a scalar mul-

tiple of the corresponding elements of another row (column), then |B| = ‘Al For example,
Q19 Aqp Qug ayi+kays aio agg g1 Q10 Qg
Qo1 Qoo Qog = Aoy +khags Qoo Gyng = Qoq Ao Qo3
Q31 Q3o Qgg asi+kazs as, agg agy+kazy  ago+kas, agg+kasg

See Problems 2-17.

FIRST MINORS AND COFACTORS. Let 4 be the n-square matrix (3.3) whose determinant |4| is given
by (3.6). When from A the elements of its {th row and jth column are removed, the determinant
of the remaining (n - 1)-square matrix is called a first minor of 4 or of |A{ and denoted by .M,;j|.
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s '
More frequently, it is called the minor of ai;- The signed minor, (—1)t J \M,;j] is called the
cofactor of a;jand is denoted by A

Q11 Q10 Gyg
Example2. If 4 = |ag; a9 agg

@3 Qg2 agg

|M | Qoo Qgg ‘M | _ | 821 92s |M I _ %21 G202
= = sl =
" Q3o Q33 ' 31 Qgg ! Q31 G830
and
1+1 1+2
O3 = (=1) |M111 = IM11l, Q1o = (-1) ’Mm’ = —}M12|.
Qi3 = (—1)“3|M13| = ]M13|
Then (3.8) is
'A) = “11’M111 - 512’M12] + ’113!M13j

= 8190y + ag50s + agglig

In Problem 9, we prove

X. The value of the determinant |A| where 4 is the matrix of (3.3), is the sum of the prod-
ucts obtained by multiplying each element of a row (column) of }A\ by its cofactor, i.e.,

7
(3.9) 4] = @i+ e d, e UnGin = kglaikoﬁik
n . .
(3.10) ,A, = @yl o+ “2j“2j + ..+ anjanj = k§1akjakj (t,7,=1,2,...,n)

Using Theorem VII, we can prove

XI. The sum of the products formed by multiplying the elements of a row (column) of an
n-square matrix 4 by the corresponding cofactors of another row (column) of 4 is zero.

Example 3. If 4 is the matrix of Example 2, we have

G31031 + agollgs + aggllsg = | 4]
and

10010+ Goolop + agyligy = I A |
while

@31001 + agalos + agglleg = O
and

@12013 + @ppllog + dgpllzgg = 0

See Problems 10-11.

MINORS AND ALGEBRAIC COMPLEMENTS. Consider the matrix (3.3). Let iy,i,,..., i, , arranged in

order of magnitude, be m, (1< m<n), of the row indices 1,2,...,n and let j, j,, .o+, Jp arrang-
ed in order of magnitude, be m of the column indices. Let the remaining row and column indi-
ces, arranged in order of magnitude, be respectively bpt1s it o, oo by @RA Jpyq, jneo, -..s i, - Such

a separation of the row and column indices determines uniquely two matrices
ai1’j1 ail,jQ “ee ail,jmw

lvleedn | Saq gy T %0,

(3.11) 11,0000, i
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and
a. . a; . ciee  as .
tm-&-l’]m-&i Lm+1v]m4-? 7‘7n+1h7n
. . . a: . a; . e a; :
1 Im+vImb2r In Ty +20Im+1 tm+2 Im+2 tm+2:In
(3-12) Tt bgaorvs Iy =
i Fipy, Jm+a i mee T Yndn |

called sub-matrices of 4.

The determinant of each of these sub-matrices is called a minor of 4 and the pair of minors

Jusdeses Jm

Im+1simeor oo In
i,do, e, i

and : :
T+ Igtosvon Iy

are called complementary minors of 4, each being the complement of the other.

Example 3. For the 5-square matrix 4 = [a,;j],

@10 Q14 G315
1,3 Qo1 Q23 2.4,5
| A5's = and ‘ Aiga = G3o Ag4 Ogs

851 @53

Ga2 Q24 CGs5

are a pair of complementary minors.

Let
(3.13) P = ditlot iy +jitat oty
and
(3.19) q = ipsrtigagt o tip+jpsat fpaot oty
p| Fudoendn | _
The signed minor (-1) Ail iy i is called the algebraic complement of
\7-m+1:].m+2,-~-’].n
AP P
q j’!ﬂ,*l!j’!ﬂ*?vn"jn N .
and (-1) . . is called the algebraic complement of
a1 bgaos by .. .
JirJos--oJm
PR

2+5+1+st A;,B %
5

1,3
Example 4. For the minors of Example3, (-1) = ——‘ AQ,5 \ is the algebraic complement

245 1 2 5 4.5

of ‘ A1:3;4| and (-1) rorat +4+51 Ai:‘;"4 = -| Ais'_zll is the algebraic complement of
1,3

$ Ap s | Note that the sign given to the two complementary minors is the same. Is this

always true?

J1 it

When m=1, (3.11) becomes A; = [aiiji] and 1Ai1| a;,; » an element of A. The
JorJaresdn

fgyigs - e yip

algebraic complement is the cofactor Ay g, -

complementary minor is | Mi“-l | in the notation of the section above, and the

A minor of 4, whose diagonal elements are also diagonal elements of A, is called a principal
minor of A. The complement of a principal minor of A is also a principal minor of A; the alge-
braic complement of a principal minor is its complement.
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Example 5. For the 5-square matrix 4 = [ai]]'

Qoo Go4 Gogy

1,3 11 013

, A1,3 =

4,85 I

2,
and IAQ_4_5 G0 G44 Ggs

@31 Qg3
@59 4s4 OG5

are a pair of complementary principal minors of 4. What is the algebraic complement of each ?

The terms minor. complementary minor, algebraic complement, and principal minor as de-
fined above for a square matrix 4 will also be used without change in connection with ,Al
See Problems 12-13.

SOLVED PROBLEMS

1. (@) _f zl - 24— 3(=1) = 11

5 7 5 6

0
4 5 35 3 4
b |3 45 = (1)' |—0' ’ 2’ I = (1X47—-56) — 0 + 2(3-6 — 4-5)
6 7 = -2 -4 = -—86

(¢) |3 4 15] = 1(4:21 —156) + 6(3:6 ~45) = —18

(d) |2 3 5 = 1(3:3-5-1) = 4

2. Adding to the elements of the first column the corresponding elements of the other columns,

-4 1 1 1 1 0o 1 1 1 1
1 -4 1 1 1 0 -4 1 1 1
1 1 -4 1 1 = 0 1 -4 1 1 = 0
1 1 1 -4 1 0 1 1 -4 1
11 1 1 -4 01 1 1 -4

by Theorem I.

3. Adding the second column to the third, removing the common factor from this third column, and
using Theorem VII

1 a b+c 1 a a+b+ec 1 a1
1 b c+a = 1 b a+b+e = (a+b+c)|1 b 1 = 0
1 ¢ a+b 1 ¢ a+b+c 1 ¢ 1

4. Adding to the third row the first and second rows, then removing the common factor 2: subtracting
the second row from the third; subtracting the third row from the first; subtracting the first row
from the second; finally carrying the third row over the other TOWS
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a,+by astby agtbg a+by as+ by ag+ba a+by; as+by az+bg
byteqg botcen bgtces = 2| biteq by +eg bs+cg = 2|by+cqy botco bgtceg
€14+ @y Co+do Cgtam a1+ bytcy Gotrbotcy, agtbgteg a, ao ag
by by b3 by by b3 a; @y a3
= 2|bi+eq bptco bates = 2]cq ¢p Cg = 2|by by bg
ag Az az a1 dg g €1 €2 C3
d @ 1
5. Without expanding, show that 14| = |d @ 1| = —(a1- @) (@ - ag) (az - ay).
ag as 1

Subtract the second row from the first; then

2 2
aj—a, ay—a, 0

ata, 1 0
2 2
! A‘ = ao as 1 = (a4 —ax)| as as 1 by Theorem II
2 2
ag asg 1 ag ag 1

and aq—a, is a factor of |A‘ Similarly, as—ag and ag—a, are factors. Now 1A1 is of order three inthe

letters; hence,

(i) 4l = k@i—an)ay-agiag—ay)

The product of the diagonal elements. a21a2, is a term of lA‘ and, from (i), the term is
k=—1 and |A|
equal.

6. Prove: If 4 is skew-symmetric and of odd order 2p - 1, then |A\ = 0.
gince A4 is skew-symmetric, 4'= —4; then ‘A’l = |-A‘ = (—1)2¢)_1}A‘ = —‘A‘. But
14] = |4]; nence. !4l = —]4]| and |4] - 0.
7. Prove: If A is Hermitian, then |Af is a real number.
Since 4 is Hermitian, 4 = A", and M) = lA/} = ‘A‘ by Theorem H. But if
lA‘ = %EjleM 5,0, %20, - O, = a+ bi
then \A1 = % €ido... 3y M4 824 -Bnjy = @ bi
Now ‘21 = ‘A' requires b = 0; hence, lAl is a real number.
1 2 3
8. For the matrix 4 = |2 3 2|,
1 2 2
3 2 2 2
T G Vi P I 2 o = (=D'?|] 2| = -2, g = (~1'*?
2 3 o40|1l 3 243
a - (=1 2+1‘ = 9, o = (=1 \ = -1, ¢4 = (=1
21 (-1) 9 9 20 (G 1 9 23 -1
2 3 1 3
Olgy = —13*1l = -5, Ogp = (=1)°*2 | = 4, Ugg = (—1)3*3
31 (-1) 3 9 32 (-1) 2 9 33 (-1

- ka?laQ. Thus,

—(aq — ao)(@o — ag)(ag—a,). Note that |4] vanishes if and only if two of the a4, ay, ag are

, by Theorem II,

2
1

[NIVL)

1
1

1
2

N
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Note that the signs given to the minors of the elements in forming the cofactors follow the pattern

+ -+

where each sign occupies the same position in the display as the element, whose cofactor is required, oc-
cupies in 4, Write the display of signs for a 5-square mafrix.

9. Prove: The value of the determinant IA‘ of an n-square matrix 4 is the sum of the products obtained
by multiplying each element of a row (column) of 4 by its cofactor.

We shall prove this for a row. The terms of (3.6) having a,, as a factor are
(a) 91 2 & ... 4, 927,95, - On,

Now ¢ Jodaein = 6]2]3 jp, Since in a permutation 1,74, k. ... J,. the 1 is in natural order. Then (a) may
be written as

® 911 £ €4y .. i 02p 03)5 - O,

where the summation extends over the o = (n—1)! permutations of the integers 2,3, ....n, and hence, as
G2o Qo3 ... Ggp

(¢} aqq foz oo e fan = a1 |M11|
Gno Opg Ann

Consider the matrix B obtained from 4 by moving its sth column over the first s—1 columns. By Theorem
vi. IBl = (—1)3-1lA*. Moreover, the element standing in the first row and first column of B is a15 and the
minor of a5 in B is precisely the minor |Mjsl of a;5 in 4. By the argument leading to (c), the terms of
a5 !Mls are all the terms of |B| having a5 as a factor and, thus, all the terms of (-1)° * 4| having a5 as
a factor. Then the terms of als{(—l)s_llMlsH are all the terms of |A| having a,s as a factor. Thus,

(3.15) |A] = 011{(—1)1*1|M11|} + 012{(—1)1+2|M12|}

F oeee 4 als{(_l)l"S'Mls‘} + oo+ a DT Mg}

= 8q0yg + G3p05p + e+ Al

: -1 +
since (—1)S = (—1)3 1. We have (3.9) with { = 1. We shall call (3.15) the expansion of |A| along its first
TOw.

The expansion of |A| along its rth row (that is, (3.9) for i=r) is obtained by repeating the above argu-
ments. Let B be the matrix obtained from A by moving its rth row over the first r—1 rows and then its sth col-
umn over the first s—1 columns. Then

Bl = o n®Mal o a4

The element standing in the first row and the first column of B is a,5 and the minor of a,¢ in B is precisely
the minor of a,5 in A. Thus, the terms of

T+
a,si(-1) lM'rsl}
are all the terms of |A l having a,s as a factor. Then
n

TR | b= k§=:1 2reQrg

Mz

IA, - T+k1M

k=1 ark{(_l)

and we have (3.9) for i=r.



28

10.

11.

DETERMINANT OF A SQUARE MATRIX [CHAP. 3

When 0;; is the cofactor of a;; in the n-square matrix A =la;;], show that

14 Qyo -0 Oy G ky Ay 541 -0 Gan

. Qoq Qoo ... (12,’-_:L kQ aQ’.+1_” Ao
) Biy; + kotgs + woor 4 knanj _ i ]

This relation follows from (3.10) by replacing ayj with k&, apj with ko, ..., anj with ky,. In making these
replacements none of the cofactors Otij, OLQj. OLnj appearing is affected since none contains an element
from the jth column of 4.

By Theorem VII, the determinant in (i) is 0 when k,=a,5, (r=1.2,....n and s #j). By Theorems VIII,
and VIL, the determinant in (i) is |4 | when &, = apj+ kayg, (r=1,2,...,n and s#j).

Write the equality similar to (/) obtained from (3.9) when the elements of the ith row of 4 are replaced
by ki.ko, ...k,

1 02 34 5 28 25 38
Evaluate: (a) |A] = |3 04 (¢c) 4] =] 12 3 tey |A] = |42 38 65
2-51 -25 -4 56 47 83

148 2 3 -4

by 14l = |-215 (dy |4] = |[5-6 3

-324 4 2-3

(a) Expanding along the second column (see Theorem X)

1 02
4] - 3 04 = @190l1o + Goollog + Ggollzy =  0-CGyp + 0-0ge + (=5)lgo
2-51
12
= —5(—1)®*2 = 5(4- = —=10
5(-1) 34 (4-6)

(b) Subfracting twice the second column from the third (see Theorem IX)

148 1 4 824 140 L
lal = |-215] = [|-215-21] = |-213] = 31 32|
-324 ~3 2 4-22 -320 B
= -3(14) = -—42

(¢) Subtracting three times the second row from the first and adding twice the second row to the third

34 5 3-3(1) 4-3(2) 5~-3(3) 0-~2—-4

—2 4
la] = 12 3| = 1 2 3 =123=—92|
-2 5-4 ~2+2(1) 5+2(2) —4+2(3) 09 2
= —(—4+436) = —32

(d) Subtracting the first column from the second and then proceeding as in (c)

2 3-4 2 1-4 2-2(1) 1 —4+4(1)
lal = |5-6 3| = |[5-11 3| = [5-2(-11) —11 3+4(~11)
4 2-3 4 —2-3 4-2(=2) -2 —3+4(-2)
o 1 o0
27 -
= |27 -11 —41] = —I o ﬁ' = -31
8 -2 —11
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12.

13.

14.

15.

16.

17.

18.

(e) Factoring 14 from the first column, then using TheoremIX to reduce the elements in the remaining columns

28 25 38 2 25 38 2 25-12(2) 38—20(2)
lal - a2 38 65| = 14f3 38 65| - 143 38-123) 65— 20(3)
56 47 83 4 47 83 4 47-12(4) 83 —20(4)
2 1-2 0 10 e
= 143 2 5| - 14|-1 29| - —14| 61' = —14(-1-54) = 770
4-1 3 6-11

Show that p and ¢, given by (3.13) and (3.14), are either both even or both odd.

Since each row (column) index is found in either p or g but never in both,

P+g = (1+2+++n) + (1+2+--+n) = 2-%n(n+1) = a{m+1)

Now p+gq is even (either n or n+1 is even); hence, p and g are either both even or both odd. Thus,

(1) = (—l)q and only one need be computed.

1 2 3 4 5

6 7 8 910 ba
For the matrix 4 = [a..] = |11 12 13 14 15|, the algebraic complement of \A2:3| is

16 17 18 19 20

21 22 23 24 25

1 3 5 :
7 Ae - Clie 18 20 (see Problem 12)
21 23 25
and the algebraic complement of 1Aiig‘ is —IA;’Q‘ = _|1; 12'

SUPPLEMENTARY PROBLEMS

Show that the permutation 12534 of the integers 1,2, 3.4.5 is even, 24135 is odd, 41532 is even, 53142 is
odd, and 52314 is even.

List the complete set of permutations of 1.2, 3, 4. taken together; show that half are even and half are odd.

Let the elements of the diagonal of a 5-square matrix 4 be a.b,c.d,e. Show, using (3.6), that when 4 is
diagonal, upper triangular, or lower triangular then 1A f = abcde.

Given 4 = B i] and B = [g g] show that 4B £ BA £ AB £ AR’ # AB' £ B4 but that the determinant of

each product is 4.

Evaluate, as in Problem1i,

2-11 22-=-2 0 23
(a) 3 24| = 27 (b) 12 3} = 4 (c) -2 04 =0
-1 03 23 4 -3-40
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19.

20.

21.

22.

23.
24.
25.

26.

27.

28.

29.

30.

DETERMINANT OF A SQUARE MATRIX [CHAP. 3
1210
(a) Evaluate |A‘ =123 9| = -4.
4511

(b) Denote by ‘B l the determinant obtained from lA ‘ by multiplying the elements of its second column by 5.
Evaluate !B | to verify Theorem III.

(¢) Denote by I C | the determinant obtained from ’A | by interchanging its first and third columns. Evaluate
\ C \ to verify Theorem V.

1217 123
(d) Show that [A ’ = }1235) + |23 4], thus verifying Theorem VIIIL.
458 453
12 7
(e) Obtain from |A ’ the determinant 1D| =123 3| by subtracting three times the elements of the first
45 -1

column from the corresponding elements of the third column. Evaluate ]D ' to verify Theorem IX.

(fyY In |A | subtract twice the first row from the second and four times the first row from the third. Evaluate
the resulting determinant.

(g) In }A | multiply the first column by three and from it subtract the third column. Evaluate to show that
| 4] has been tripled. Compare with (e). Do not confuse (e) and (g).

If A is an n-square matrix and & is a scalar, use (3.6) to show that !kA | = kn[ A ’

Prove: (a) If IAI =k, then |Z| :Z: |Z’!
(b) If A is skew-Hermitian, then | A | is either real or is a pure imaginary number.

(a) Count the number of interchanges of adjacent rows (columns) necessary to obtain B from 4 in Theorem V
and thus prove the theorem.

(b) Same, for Theorem VI.

Prove Theorem VII. Hint: Interchange the identical rows and use Theorem V.

Prove: If any two rows (columns) of a square matrix 4 are proportional, then ’A ’ = 0.
Use Theorems VII, III, and VII to prove Theorem IX.

Evaluate the determinants of Problem 18 as in Problem 11.

ab0o0
_|ledool. _lab|lef ; T
Use (3.6) to evaluate lAI =looef| then check that ’A’ “leallgnl Thus, if A = diag(44, A,), where
00gh
A, A, are 2-square matrices, \A ’ = \All . 1 AQ“

-1/3 -2/3 -2/3
Show that the cofactor of each element of | 2/3 1/3 -2/3] is that element.

2/3 -2/3 1/3

Show that the cofactor of an element of any row of is the corresponding element of the same

R
O w
W - W

numbered column.

Prove: (a) If 4 is symmetric then 05 = ocﬁ when i #j.

(b) If 4 is n-square and skew-symmetric then Uyj = (—1)n-106j1; when i #;.
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31. For the matrix 4 of Problem 8
(a) show that |A ? =1
Q11 Opy Qgy
(b) form the matrix C = |15 0Oy Ogp| and show that AC=1.
Q13 Olog Olgg
(c) explain why the result in (b) is known as soon as (a) is known.

be a? a2
32. Multiply the columns of lA ‘ = | b2 ca B2 respectively by a.b,c; remove the common factor from each of
c2 ¢2 ab
bec ab ca
the rows to show that ‘Al = |ab ca be
ca be ab
a? a 1 bed a® a2 a 1
2 d 3 2
33. Without evaluating show that |°. 2 1 @cd| _ |8° 8% b 1] _ (@ —b)(a—c)a—dyb—c)b—dYc—d).
c2 ¢ 1 abd 3 c?2 ¢ 1
d® d 1 abe d® d2 d 1
011 1 011 11
101...1 101 11
110... -
34. Show that the n-square determinant ‘A| = 1 ! = (n-1) 110..11 = (—1)n 1(n-l).
............ 1 1 1 . 0 1
111...0 111 11
n-1 n-2
a4, aq 1l
n-1 n-o
a a; ... ap1
35. Prove: = {(al—ag)(al—ag) ,..(al—aﬂ)}f(aQ—ag)(aQ—a‘t) .‘.(aQ-—an)} {an_l - an}
n-1 n-o
ay a, L a,l
nas+by nas+by nag+ by a1 G2 ag
36. Without expanding, show that [nby+c, nbyte, nbgtcs| = (+1Xr?—n+1)| by b, byl.
ncy+ay neotay, negtag Cq Cp Cg
0 x—a x—b

37. Without expanding, show that the equation | x+a 0 x—-c{ =0 has 0 as a root.

xt+b x+c 0

38. Prove | «ccveiiiiiiiiiis, = bn—l(na-}-b).



Chapter 4

Evaluation of Determinants

PROCEDURES FOR EVALUATING determinants of orders two and three are found in Chapter3. In
Problem 11 of that chapter, two uses of Theorem IX were illustrated: (a) to obtain an element 1

or —1 if the given determinant contains no such element, (b) to replace an element of a given
determinant with 0.

For determinants of higher orders, the general procedure is to replace, by repeated use of
Theorem IX, Chapter 3, the given determinant ’Al by another |B| = |bijl having the property
that all elements, except one, in some row (column) are zero. If bﬁq is this non-zero element
and Bﬁq is its cofactor,

}A! = ‘B‘ = b‘PCI'Bﬁq = (—1)¢>+qb¢,q-minor of bﬁq

Then the minor of bﬁq is treated in similar fashion and the process is continued until a determi-
nant of order two or three is obtained.

Example 1.
2 3-24 242(3) 3+2(=2) —2+2(1) 4+2(2) 8-10 8
3-2 12| 3 -2 1 2 _ 3-21 2
3 2 34|  [3-3(3) 2-3(-2) 3-31) 4-32| |-6 80-2
-2 4 05 -2 4 0 5 -2 40 5
8-1 8 8+8(-1) —1 8+8(—1) 0 -1 0
= (=1)?*3|-6 8-2| = —|-6+8(8) 8 —2+8(8) = —|58 8 62
-2 4 5 —2+8(4) 4 5+8(4) 30 4 37
58 62
= (=21 286
(=177 (-1) 30 37

See Problems 1-3

For determinants having elements of the type in Example 2 below, the following variation

may be used: divide the first row by one of its non-zero elements and proceed to obtain zero
elements in a row or column.

Example 2.
jo.921 0.185 0.476 0.614 1 0.201 0.517 0.667 1 0.201 0.517 0.667
0.782 0.157 0.527 0.138| 0.91 0.782 0.157 0.527 0.138} 0.921 0 0 0.123 -0.384
0.872 0.484 0.637 0.799) ~ 0.872 0.484 0.637 0.799| 0 0.309 0.196 0.217
10.312 0.555 0.841 0.448 0.312 0.555 0.841 0.448 0 0.492 0.680 0.240
0 0.123 —-0.384 0 -0.320 1
= 0.921]0.309 0.196 0.217| = 0.921(-0.384)[0.309 0.196 0.217
0.492 0.680 0.240 0.492 0.680 0.240
0 0 1

0.309 0.265

= 0.921(-—0.384)|0.309 0.265 0.217| = 0.921(-0.38
1( ) 65 21 1( 4)|0.492 0.757|

0.492 0.757 0.240
= 0.921(-0.384)(0.104) = -0.037

32
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THE LAPLACE EXPANSION. The expansion of a determinant 'A( of order n along a row (column) is
a special case of the Laplace expansion. Instead of selecting one row of ‘A| let m rows num-

bered iy, i, ...,4, , when arranged in order of magnitude, be selected. From these m rows
nn-1)...(n —m+1) . ]1]2]m
o = R minors | Aj, 4, G,

can be formed by making all possible selections of m columns from the » columns. Using these
minors and their algebraic complements, we have the Laplace expansion
Ajl’jQ' coor Im

i,igy ey i

Im+1s Jmaas oo I

S
(4.1) 4] 2D

"mevlmen o5 ln

where s = iy+ip+co+ip +jy+j, +++- +j, and the summation extends over the o selections of the
column indices taken m at a time.

Example 3.
2 3-24
3 - 1
Evaluate 1A‘ = 3 z Bi , using minors of the first two rows.
-2 4 05
From (4.1),
1424142 12 3,4 14244483 1,3 2,4
‘A| = (=1 |A1,2|"A3,4| + (=1 ’A1,2"|A3,4|
1+2+4144| 1,4 2,3 1+2+243| 2,3 1.4
+ (=) laol-lazel + -p |a72]- 1457
+ (~1)“Q+QM’A%;|"A§:3 . (_1)1+2+e+4‘Af:;I_,Aé:i
B Iz 3l_|3 4| ~ |2 —2|. 241 |2 4|_l2 3|
3 -2 05 3 1 4 5 3 2 4 0
. 3-2|_’34| |34||33|+-—24|32
-2 1 -2 5 -2 2 -2 0 12 -2 4

= (=13)(15) — (8)(—8) + (-8)—12) + (-1)23) - (14)6) + (-8)16)
= —286
See Problems 4-6

DETERMINANT OF A PRODUCT. If 4 and B are n-square matrices, then

(4.2) 4Bl -~ 14l.1Bl
See Problem 7

EXPANSION ALONG THE FIRST ROW AND COLUMN. If 4 = [aij] is n-square, then

n n i1
(4.3) 4] - @310, - 2 X @i 0y50, 5
1=2 J=2
i1 .
where 0, Is the cofactor of a;; and oy; is the algebraic complement of the minor Z%l le of 4.
11 @

DERIVATIVE OF A DETERMINANT. Let the n-square matrix 4 = [a,;j] have as elements differen-
tiable functions of a variable x. Then
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I. The derivative, % lA I of |A | with respect to x is the sum of n determinants obtained

by replacing in all possible ways the elements of one row (column) of }A‘ by their derivatives
with respect to x.

Example 4.
%2 x+1 3 22 1 0 %% x+1 3 x> x+1 3
d
el -1 28 = 1 22-1 #°| + |0 2 3°[ + |1 2x-1 &°
0 x -2 0 x -2 0 x ~2 0 1 0
= 5 + 4x — 12%2 — 6x5
See Problem 8
SOLVED PROBLEMS
2 3-2 4 2 3 -2 4 2 3 -2 4
7T 4 — 0 —2(2) 4-2(3) -3-2(-2) 10~ 3 -2 1 2
1. 31 - |7 ) 3) =3-2(=2) 2D = —286 (See Example 1)
32 3 4 - 3 2 3 4 3 2 3 4
-2 4 0 5 -2 4 0 5 -2 4 0 5

There are, of course, many other ways of obtaining an element +1 or —1; for example, subtract the first
column from the second, the fourth column from the second, the first row from the second, etc.

-11 -4

10-1 2 10 —-1+1 2-0 100 0
5 |23 2-2 B 23 242 —-2-22) - 234 -6
124 2 1 N 24 2+2 1-22) h 2 4 4 -3
31 5 -3 31 5+3 —3-2(3) 318 -9

3 4 —6 3-2(4) 4-2(4) —6-2(=3) -5 -4 0

= 4 4 -3 = 4 4 -3 = 4 4 -3

18 -9 1-3(4) 8-3(4) —-9-3(-3) —11 -4 ©

= 3|_5 _4| = =72

0 1+i 1+26
1-1 0 2-3i
1-2i 2+43i 0

3. Evaluate |A| =

Multiply the second row by 1+i and the third row by 1+2i; then

0 1+ 1+2% 0 1+ 1+2 0 1+i 1+2
(A+i(1+20) 4] = (—1+303j4] = |2 o s5-i| = |2 o 5-1i = |0 8-14i 25-5;
5 -44T 0 1 —4+7i -10+2i 1 —4+7 ~10+2i

. ‘9
- 1+i 1+2¢ - 6+ 18
8 -14i 25-15i

and |4]=6.
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4. Derive the Laplace expansion of IAl = |a¢j| of order n, using minors of order m<n.

Jdor ooeu I
Consider the m-square minor A’&-ig. . of |A| in which the row and column indices are arranged in

order of magnitude. Now by iy —1 interchanges of adjacent rows of |4|, the row numbered iy can be brought
into the first row. by i,— 2 interchanges of adjacent rows the row numbered i, can be brought into the second
row, ..., by iy —m interchanges of adjacent rows the row numbered i, can be brought into the mth row. Thus,
after (fy—1)+ ((o—2)+ v+ (I =m) = i3 + Qg + coo + Iy — $m(m+1) interchanges of adjacent rows the rows
numbered iy, i, ..., ip occupy the position of the first m rows. Similarly, after ji +jo+ +=- +j, — sm(m +1)
interchanges of adjacent columns, the columns numbered ji.js, ....j, Occupy the position of the first m col-
umns. As a result of the interchanges of adjacent rows and adjacent columns, the minor selected above oc-
cupies the upper left corner and its complement occupies the lower right comer of the determinant; moreover,

|A|has changed sign O = iy +ig+ <+ +ip + j1 + jo + *** + jp—m(m+1) times which is equivalent to
S = iy+ig+ s +ip+ji+jo+ -+ +], changes. Thus

o e Jm Jm+t Imaon - dn . s
i dp i | [ g arin s o iy | YiEldS ml(n—m)! terms of (-1) |A‘ or
s| dukdn| | dmerines dn|
(a) (-1) Aii,i«z, i N igas. imao i, yields m!(n—m)! terms of IA \
— — !
Let i4,io, ...,ip be held fixed. From these rows 0 = re=D).(n—m+1) = 2 different m-square
1-2....m m!(n—-m)!

minors may be selected. Each of these minors when multiplied by its algebraic complement yields m!(n—m)'
terms of |A| Since, by their formation, there are no duplicate terms of |A| among these products,

jl-jQ' ']’”L jm+1vj7n+2: :Jn

Ab i iy

la] - 20’

Imetoitmeon ooy ip

where s = iy +ip+ - +ip+ji+jo+ - +j, and the summation extends over the O different selections
j1.Jo..... jp Of the column indices.

1 23 4
2121 . . .
5. Evaluate |A| =100 1 Nt using minors of the first two columns.
3412
1 2 11 1 2 21 21 3 4
A — _1 142+1+2 . I + _1 1444142 ’ . ' ‘ + _1 o24+441+2 . I
I I =D 21 12 1) 3 4 11 = 3 4 11
= (=3)(1) + (=2)(1) - (5)(~1)
= 0
6. If 4, B, and C are n-square matrices, prove
A 0O
P = = Al . |B
N PR
From the first n rows of |P| only one non-zero n-square minor, ’A‘ can be formed. Its algebraic com-
plement is |B| Hence, by the Laplace expansion, |P| = |A| . |B|
7. Prove |4B| = |4|.|B]|.

n
Suppose 4 = [a;;] and B =[b;;] are n-square. Let C - lcjj1= 4B so that cy; = %aikbij From
Problem 6,
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211 @12 a1n 0 0 0
Qpq Qoo asy, 0 0 0
Q1 Gpo vt Gpy 0 0 - 0
Pl - - |al.18]
-1 0 = 0 by o bip
0 -1 0 boy by bon
0o 0 -1 bpy byo bny,
To the (n +1)st column of 'P‘ add b,; times the first column, b,, times the second column, ..., b,, times
the nth column; we have
a1y G19 a1, c11 O 0
Gp1 8o2 sy €1 O 0
IP , _ an1  Gno @y Cpg 0 0
h -1 0 0 0 byo o by
0 -1 0 0 boo bon
0 0 -1 0 byo byn
Next, to the (n + 2)nd column of |P| add by, times the first column, b,, times the second column, ..., b5
times the nth column. We have
a1 812 @1y, €11 C1p O 0
Ggq G292 oy, €21 Coo 0 0
IP I _ Qn1 Gno %m  Cn1 Cne 0 0
-1 0 0 0 0 b3 bin
0 -1 0 0 0 byg bon
0 0 - =1 0 0 bpg bun
. . e A
Continuing this process, we obtain finally |P| = I . From the last n rows of |P| only one non-
—in

Zero n-square minor, }—In[ = (~=1)" can be formed. Its algebraic complement is (_1)1"2*"'*“*‘"“’*""'?"lcl

= (2 iel wence, |P] = (c1y=1y*2* V¢l = |c| ana lc| = 48] = |4!.1B].

141 QG0 Q3
8. Let A =) ay, ay, ays| where ajj = ag(x), (i,j =1, 2,3), are differentiable functions of x. Then
Q31 Qg0 Qg3
|4l = Gii0maes + Gty + GigGeay  ~ GOyl - GuplniGam - Gyglondn

: d ’
and, denoting I %j by a;;,
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d ' ‘ , - , . , P
ax Al = a1y000833 + Og0811033 + G3g011090 + Q1900503 + Gog0100y + G31010093
. , . . , ,
+ 043030001 + 030013857 + G013030 — G313893035 — Go301383> — O320171023
, . , . , ,
— 040891033 — (21819833 — Gggl158y — (130080317 — G99l13037 — 0O310138%

, , , , , , , , ,
= 811041 + 210019 + @13013 + @9y Uoy + Apo Uy + Apglog + a1 Ogq + aAgolap + agaliag

, , ,
@11 Q12 Q13 @11 Q19 G413 @11 G40 Q43

. , .
= Qo1 Q9o Gogz| + (801 Ggp Qo3 + |821 Qoo 423

Q31 Gzp Q33 Q39 Qgzo Ggg Q31 Ggzo G3g

by Problem 10, Chapter 3.

SUPPLEMENTARY PROBLEMS

9. Evaluate:
3572 1 -2 3 -4
2411 2 -1 4 -3
= 156 = =304
@ 1 2000 5 © 1y 3 4 _s5
1134 3 -4 5 6
C11e 1 -2 3 -2 —2
41 2 -1 1 3 2
b - a4l (11 2 1 1] = 18
()4129 ()14325 1
2427
3 -2 2 2 -2

10. If 4 is n-square, show that |Z’A l is real and non-negative.

11. Evaluate the determinant of Problem 9(¢) using minors from the first two rows; also using minors from the
first two columns.

[ a, a by b
12. (@) Let 4 = 1721 and B - t o
-, a4 -by, by
Use |AB| = |4|"|B| to show that (a5+ag)(bo+ba) = (agby—agby) + (agby+ a, o).

(by Let 4 = | %09 aQ”"{l and B < [bl”bs b?”b‘*]

| ~ap+ia, a;~iag bo+ib, bi—ibg

2 2 92 2 92 o 2
Use [AB| = |4]-|B| to express (ai+as+ag+ag) (bs+ bot bat by) as a sum of four squares.
0 00O0UO1
000021
13. Evaluate 000321 using minors from the first three rows. Ans. —720
004321
054321
6 54321



38

14.

15.

16.

17.

18.

19.

20.

21.

EVALUATION OF DETERMINANTS [CHAP. 4
f1 2121
00111
Evaluate |1 1 0 0 O using minors from the first two columns. Ans. 2
00112
12211
If Ay, Ao, ....Ag are square matrices, use the Laplace expansion to prove
| diag(4s, Ao . A | = [ Ag]-| Ap] o 14G]
@y a, ag a4
by by by b,
Expand using minors of the first two rows and show that
aq a, ag ay
by by by by
4y ag| |ag a, a1 agl |62 a4 @y a4 |ag ag| 0
by by |bg by by bg| |bo by by ba| lby bg
: . 0 4 . .
Use the Laplace expansion to show that the n-square determinant B cl where 0 is k-square, is zero when
k> %n.
In |A| = 81304 + @10030 + @13013 + 314014 expand each of the cofactors O4,, 044, 044 along its first col-
umn to show
4 4 i1
4] = apay, - X X @41 8170
i=2 j=2
) Qrr das
where 0; is the algebraic complement of the minor | ** Y| of [4}.
J ajy aii
1 Gif
If ®;; denotes the cofactor of a;; in the n-square matrix 4 = [a,;j 1. show that the bordered determinant
841 819 ***t Qgp Py 0 g1 g =+ 4qn
@21 Qg ***t Oop Po P1 @11 G °otr Qgp n n
......................... - Cetsessiiecnneisereasas - - 3 3 po: 0
i=y j=a DY T
An1 Bpo  **tt Gpp Ppn Pn 8ny @po " Gpp
491 9z > 9, O
Hint. Use (4.3).
For each of the determinants | 4|, find the derivative.
2
2 3 x 1 2 -1 x-1 1
x x 2 3 4 3
(a) (b [x° 2x+1 =« () x x 22 +5
2x  3x+1 5 N
0 3x-2 =x°+1 x+1 x x

3

Ans. (@) 2%+ 9x°— 8x°, () 1 — 6x + 2127+ 12%° — 15x*, (c) 6x°— 5x* — 28x% + 9x% + 20% — 2

Prove: If 4 and B are real n-square matrices with 4 non-singular and if H = 4+{B is Hermitian, then

a2 Al e ey



Chapter 5

Equivalence

THE RANK OF A MATRIX. A non-zero matrix 4 is said to have rank r if at least one of its r-square
minors is different from zero while every (r+1)-square minor, if any, is zero. A zero matrix is
said to have rank 0.

is r=2 since = -1 £ 0 while |4]=0.

23'

1
Example 1. The rank of 4 = |2
3

[5) BRVC I )
~1 b W

See Problem 1.

An n-square matrix 4 is called non-singular if its rank r=n, that is, if |A| #£ 0. Otherwise,
A is called singular. The matrix of Example 1 is singular.
From |AB| = | 4[| B| follows

I. The product of two or more non-singular n-square matrices is non-singular; the prod-
uct of two or more n-square matrices is singular if at least one of the matrices is singular.

ELEMENTARY TRANSFORMATIONS. The following operations, called elementary transformations,
on a matrix do not change either its order or its rank:
(1) The interchange of the ith and jth rows, denoted by H;;
The interchange of the ith and jth columns, denoted by Kij-

(2) The multiplication of every element of the ith row by a non-zero scalar %, denoted by H; (ky;

The multiplication of every element of the ith column by a non-zero scalar %, denoted by K;(k).

(3) The addition to the elements of the ith row of %, a scalar, times the corresponding elements
of the jth row, denoted by Hij (ky;

The addition to the elements of the ith column of k, a scalar, times the corresponding ele-
ments of the jth column, denoted by Kij(k).

The transformations H are called elementary row transformations; the transformations X are
called elementary column transformations.

The elementary transformations, being precisely those performed on the rows (columns) of a
determinant, need no elaboration. It is clear that an elementary transformation cannot alter the
order of a matrix. In Problem2, it is shown that an elementary transformation does not alter its
rank.

THE INVERSE OF AN ELEMENTARY TRANSFORMATION. The inverse of an elementary transforma-
tion is an operation which undoes the effect of the elementary transformation; that is, after 4
has been subjected to one of the elementary transformations and then the resulting matrix has
been subjected to the inverse of that elementary transformation, the final result is the matrix 4.

39
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123
Example2. Let 4 = |4 5 6}.
789
123
The effect of the elementary row transformation H,q(-2) is to produce B = {2 1 ol.
789

The effect of the elementary row transformation H,,(+2) on B is to produce A4 again.
Thus, Hpi(~2) and H,4(+2) are inverse elementary row transformations.

The inverse elementary transformations are:

ay By = Hy Ky = Ky

@) H (k) = Bk K; (k) = Ky(1/k)

@) Hhy = Hy-h Kihy = Kis(—h)
We have

H. The inverse of an elementary transformation is an elementary transformation of the
same type.

EQUIVALENT MATRICES. Two matrices A and B are called equivalent, A~B, if one can be obtained
from the other by a sequence of elementary transformations.

Equivalent matrices have the same order and the same rank.

Example 3. Applying in turn the elementary transformations Hyy(—2), Haq (1), Han(—1).

1 2 -1 4 1 2 -1 4 1 2 -1 4 1 2 -1 4

A = 2 4 3 5™ 0 0 5 -3]~fjo0 5 -3]™~fo 0 5 -3 = B
-1 -2 6 -7 -1 -2 6 -7 00 5 -3 00 0 0O

Since all 3-square minors of B are zero while I—; :‘ # 0, the rank of B is 2; hence.

the rank of 4 is 2. This procedure of obtaining from 4 an equivalent matrix B from which the
rank is evident by inspection is to be compared with that of computing the various minors of 4.

See Problem 3.

ROW EQUIVALENCE. If a matrix 4 is reduced to B by the use of elementary row transformations a-
lone, B is said to be row equivalent to 4 and conversely. The matrices 4 and B of Example 3
are row equivalent.

Any non-zero matrix 4 of rank r is row equivalent to a canonical matrix C in which

(a) one or more elements of each of the first r rows are non-zero while all other rows have
only zero elements.

(b) in the ith row, (i =1, 2, ...,r), the first non-zero element is 1; let the column in which
this element stands be numbered j; .

(€) j1<jo < eevr <

(d) the only non-zero element in the column numbered Ji. (§=1,2,...,1), is the element 1 of
the /th row.
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To reduce 4 to C, suppose j, is the number of the first non-zero column of 4.

(i) If aij, #0, use Hl(l/aijl) to reduce it to 1, when necessary.

(i) If a;;,= 0 but i #0, use Hlﬁ and proceed as in (i,).

(ii) Use row transformations of type (3) with appropriate multiples of the first row to obtain
zeroes elsewhere in the jist column.

If non-zero elements of the resulting matrix B occur only in the first row, B = C. Other-
wise, suppose j, is the number of the first column in which this does not occur. If b2j2 #0,
use H2(1/b2j2) as in (i,); if b2j2= 0 but bqu #0, use ng and proceed as in (i;). Then, as
in (if), clear the jond column of all other non-zero elements.

If non-zero elements of the resulting matrix occur only in the first two rows, we have C.
Otherwise, the procedure is repeated until C is reached.

Example 4. The sequence of row transformations Ho1(~2), Hg1(1); Ho(1/5); Hio(1), Hgo(-5)  applied
to A of Example 3 yields

1 2 -1 4 12 -1 4 1 2 -1 4 1 2 0 17/5
A = 2 4 3 5|™~|]0 0 5 -3|™~|0 0 1 -3/5/~]0 0 1 -3/5
-1 -2 6 -7 0 0 5 -3 0 0 5 -3 0 0 o0 0
= C

having the properties (a)- (d).
See Problem 4.

THE NORMAL FORM OF A MATRIX. By means of elementary transformations any matrix A4 of rank
r>0 can be reduced to one of the forms

(5.1) I, [’g g:l [, o, [’g]

called its normal form. A zero matrix is its own normal form.

Since both row and column transformations may be used here, the element 1 of the first row
obtained in the section above can be moved into the first column. Then both the first row and
first column can be cleared of other non-zero elements. Similarly, the element 1 of the second
row can be brought into the second column, and so on.

For example, the sequence H,1(~2), Hz1(1), Ko1(=2), Kau(1), Ku1(-4), Koa Ko(1/5),

I

0
H3o(~1), K40(3) applied to 4 of Example 3 yields o ol the normal form.

See Problem 5.

ELEMENTARY MATRICES. The matrix which results when an elementary row (column) transforma-
tion is applied to the identity matrix In is called an elementary row (column) matrix. Here, an
elementary matrix will be denoted by the symbol introduced to denote the elementary transforma-
tion which produces the matrix.

100
Example 5. Examples of elementary matrices obtained from I5 = |0 1 0] are
001
010 100 100
His=|1 0 0]=K,5, Haky =10 1 0] = Ka(k). Hog(k) = |0 1 k| =Kgak)
001 00k 001



42

LET

EQUIVALENCE [CHAP. 5

Every elementary matrix is non-singular. (Why?)

The effect of applying an elementary transformation to an mxn matrix A can be produced by
multiplying 4 by an elementary matrix.

To effect a given elementary row transformation on A of order mxn, apply the transformation
to I, to form the corresponding elementary matrix #/ and multiply 4 on the left by H.

To effect a given elementary column transformation on 4, apply the transformation to I, to
form the corresponding elementary matrix K and multiply 4 on the right by K.

123 001]1123 789
Example 6. When 4 = |4 5 6]. His-4A = |0 1 0]|4 56| - |4 5 6| interchanges the first and third
789 100|789 123
123 100 723
rows of A; AKi5(2) = |4 5 6)-]01 0] =]16 5 6] adds to the first column of 4 two times
789 201 25 89

the third column.

A AND B BE EQUIVALENT MATRICES. Let the elementary row and column matrices corre-
sponding to the elementary row and column transformations which reduce A to B be designated

as Hy, H, ... Hy; Ki,K,, ...,K; where H, is the first row transformation, //, is the second,...;
K, is the first column transformation, K, is the second, .... Then
(5.2) Hy...Hy,-H,-A.K,-K,...K; = PAQ = B
where
(5.3) P = H, .. H,-H and Q = K,.K, ... K,
We have

III. Two matrices A and B are equivalent if and only if there exist non-singular matrices
P and Q defined in (5.3) such that PAQ = B.

12-12
Example 7. When A4 = |2 5 -2 3], Hay(=1) +Hpy(=2) - A - Koq(~2) + Kg1(1) - Ka1(~2) - K4o(1) - Kg(3)
12 12
- - - 0 00— 0
{06 Lo G 1-200lfro10][too0-2J[1000] [to00
0 1o00]l{o1o0o0flo10o offoro1|l]o100
= 010f-}-210}-4- . . . . |
0 o10[fjoo10]foo1 olloo1o0}]oo3o0
-101 001
- = 0 co1fjooo1] |ooo 1]]Jooo1flooo1
1-23 -4
" 10 0] 0 131 1000
= |[-210{-4- \ = PAQ = |o100| = B
101 0 0z 0 0010
- g 0 00 1

Since any matrix is equivalent to its normal form, we have

IV. If A is an n-square non-singular matrix, there exist non-singular matrices P and Q
as defined in (5.3) such that PAQ =1, .

See Problem 6.
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INVERSE OF A PRODUCT OF ELEMENTARY MATRICES. Let
P = H, ...H, H, and Q = Ki-K,...K;

as in (5.3). Since each H and K has an inverse and since the inverse of a product is the product
in reverse order of the inverses of the factors

— - — - — - -1 !
(5.4) P o= B H' and 0 - KKK
Let A be an n-square non-singular matrix and let P and Q defined above be such that PAQ
=1,. Then
-1 1 ] 1 1
(5.5) A = P (PAQ = P L,-¢ = P .Q

We have proved

V. Every non-singular matrix can be expressed as a product of elementary matrices.
See Problem 7.
From this follow

VL. If 4 is non-singular, the rank of 4B (also of BA4) is that of B.
VIL. If P and () are non-singular, the rank of PAQ is that of A.

CANONICAL SETS UNDER EQUIVALENCE. In Problem 8, we prove
VHI. Two mxn matrices 4 and B are equivalent if and only if they have the same rank.

A set of mxn matrices is called a canonical set under equivalence if every mxn matrix is
equivalent to one and only one matrix of the set. Such a canonical set is given by (5.1) as r
ranges over the values 1,2,...,m or 1,2,...,n whichever is the smaller.

See Problem 9.

RANK OF A PRODUCT. Let A4 be an mxp matrix of rank r. By Theorem IN there exist non-singular

matrices P and Q such that
I
PAQ - N = [’ 0]
0 0

Then A4 = PnlNQ_i. Let B be a pxn matrix and consider the rank of

(5.6) AB = PTNQTB

By Theorem VI, the rank of AB is that of NQ_lB. Now the rows of NQ_lB consist of the firstr
rows of Q7B and m-r rows of zeroes. Hence, the rank of AB cannot exceed r, the rank of 4.
Similarly, the rank of AB cannot exceed that of B. We have proved

IX. The rank of the product of two matrices cannot exceed the rank of either factor.

Suppose AB = 0; then from (5.6), NO_lB = 0. This requires that the first r rows of Q—lB

be zeroes while the remaining rows may be arbitrary. Thus, the rank of Q_lB and, hence, the
rank of B cannot exceed p-r- We have proved

X. If the mxp matrix 4 is of rank r and if the pxn matrix B is such that AR = 0, the
rank of B cannot exceed p-r.
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SOLVED PROBLEMS

1. (@) The rank of 4 = [ i 3 §:| is 2 since i (2)1 # 0 and there are no minors of order three.
123 2 3
(b) Therank of A=]1 25 iszsince'A|:0 and'25|;40.
2 48
023
(c) The rank of A =10 4 6} is 1 since |A! = 0, each of the nine 2-square minors is 0, but nov
069

every element is 0.

2. Show that the elementary transformations do not alter the rank of a matrix.

We shall consider only row transformations here and leave consideration of the column transformations
as an exercise. Let the rank of the mxn matrix 4 be r so that every (r+1)-square minor of 4, if any, is zero.
Let B be the matrix obtained from 4 by a row transformation. Denote by |R| any (r+1)-square minor of 4 and
by |S[ the ¢+1)-square minor of B having the same position as |R|.

Let the row transformation be H,;j. Its effect on [R| is either (i) to leave it unchanged, (ii) to interchange
two of its rows, or (iii) to interchange one of its rows with a row not of |R|. In the case (i), |S| = |R| = 0;
in the case (ii), [S| = —|R| = 0; in the case (iii), |S| is, except possibly for sign, another (r+1)-square minor
of |4| and, hence, is 0.

Let the row transformation be H; (k). Its effect on |R| is either (i) to leave it unchanged or (ii) to multi-
ply one of its rows by £. Then, respectively, |S|=|R|=0 or |S|=%|R|= 0.

Let the row transformation be #;;(k). Its effect on | R| is either (i) to leave it unchanged, (ii) to increase
one of its rows by & times another of its rows, or (iii) to increase one of its rows by k times a row not of |R|
In the cases (i) and (if). |S|=|R|=0; in the case (ili), |[S| = |R|% & (another (v +1)-square minor of 4) =
0t k-0 = 0.

Thus. an elementary row transformation cannot raise the rank of a matrix. On the other hand, it cannot
lower the rank for, if it did, the inverse transformation would have to raise it. Hence, an elementary row
transformation does not alter the rank of a matrix.

3. For each of the matrices 4 obtain an equivalent matrix B and from it, by inspection, determine the
rank of 4.

123} 1 2 3] [t 23] [1 23
(@) 4 = |21 3|™~j0 -3 -3]~]o 1 1|~]o 1 1] = B
321} [0-4-8] Jo12] oo

The transformations used were Hpy(—2). Hgy(—3); Ho(—1/3), Hs(—1/4); Hap(~1). The rank is 3.

]’1230 1 2 30 1 2 30 1 2 36 1 2 30
2432 0o 0 —32 0 -4 -8 3 0 -4 -8 3 0 -4 -83
3
| 6

by A4 = ~ ~ ~ = B. The rank is 3.
™ 213} lo-4 —83] o o =32] Jo 0o-32| |o o0-32 s3
8175 0 —4 —11 5 0 -4 —-11 5 0 0 -32 0 0 00
1 1+ —i 1 0 0 1 0 0
() A = |0 i 1+20|™j0 ¢ 1+2i|™~|0 i 1+2]| = B. The rankis 2.
|1 1+20  1+i 1 i 1+2 00 o0

Note. The equivalent matrices B obtained here are not unique. In particular, since in (a) and (b) only
row transformations were used, the reader may obtain others by using only column transformations.

When the elements are rational numbers, there generally is no gain in mixing row and column
transformations.
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4. Obtain the canonical matrix C row equivalent to each of the given matrices 4.

[0013-2) o113 2] [o113 ¢ 0100 4
ol lo126 o] . loo13-2} loo13-2

(a)A:0126 Jo1286 ~ 1 N _c

0239 2| lo239 2] |[oo13-2] {ooo0o o

0113 2] |[oo13-2] [p0o13-2] [0000 O

12-231‘1 1 2-23 1] Jto0-23 3] [Moo3 7} 1000 1
b)A_13-230m0100_1,V01oo—1mo1oo—1mo1oo—1_C
( " J24-364] Jo 0o 10 2] Joo 10 2] Joo10 2| loo10 2

[11-146] lo-1 11 5] oo 11 4] Jooo1 2] looo1 2

5. Reduce each of the following to normal form.

120-1 1 20-1 1 000 10 00 10 0 0 10 0 O 1000

(@) A4 = 341 2]™~o-21 5|vjo-215|~lo1-25|~lo1—-2 s5i~lo1 o o|~loi1o00
-232 5 0 72 3 0 723 02 73 00 11-7 00117 0010
= [I; 0]
The elementary transformations are:
Ho1(=3). H34(2); Ko1(~2). Kaa(1); Kog: Hao(—2); Kso(2), Kan(~5); Ka(1/11), Kya(T)
02 3 4 23 5 4 13 5 4 1354 1000 1000 1000 1000
by 4 =123 5 4|™~Jo2 3 4|~lo2 3 41™~10234fi~|0o234|™~|o134f~|o100]™~]o100
481312 48 1312 281312 0234 0234 0134 0100 0000
0
"o o
The elementary transformations are:
Hio: Ki(3); Hay(=2); Kpq(—3). Ka1(—5), Kaq(—4); KQ(%); Kgo(—-3), Kyo(~4); Hazo(—1)
1 23-2
6. Reduce A =]2-21 3] to normal form N and compute the matrices P, and @, such that P,AQ, = N.
3 04 1
I
Since A is 3x4, we shall work with the array A4 L Each row transformation is performed on a row of
3
seven elements and each column transformation is performed on a column of seven elements.
1 00 0 1 0 0 o 1 -2 -3 2 1 -2-3 2
0 10 0O 0 1 0 0 0 1 00 01 00
0 01 0 0 0 1 0 0 0 10 0 0 10
0 00 1 - 0 0 0 1 - 0 0 01 - 0 0 01
1 23-2100 1 2 3-2 100 1 0 00 100 1 0 00 1t 00
2-21 3010 0-6-5 7T-210 0-6-5"7-210 0-6-57-2 10
3 04 1001 0-6-5 7-301 0-6-517-301 0 0 00 -1-11
1 1/3 -3 2 1 1/3 ~4/3 -1/3
0~1/6 00 0 -1/6 —5/6 /6
0 0 10 0 0 1 0 Q4
> 0 0 01 > 0 0 0 1 or
1 0 00 1 00 1 0 0 0 1 00O N P
0 1 -5 7-2 10 0 1 0 0-2 10
0 0 00-1-11 0 0 0 0-1-11
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1 1/3 -4/3 -1/3
0 -1/6 -=5/6 /6
0 0 1

0 o0 0 1

and PAQ, =

o o~
o~ o
o o e
oo o
n
=z

1 3 3
7. Express A = |1 4 3| as a product of elementary matrices.
13 4
t

The elementary transformations Hoy(—1), Hgq(—1); Koy(—3). Kg4(—3) reduce 4 to I3, that is, [see (5.2)]

I = Hy-Hi-A-Ki-Ky = Hgy(=1)-Hoy(=1) 4 +Kp1(=3) -K5,(=3)

Lo 100 100 103 130
-1 _: - -
From (5.5), 4 = H;-H,-K;-K; ={110| Jo1o] Jo1o|] Jo1o0

001 101 001 001

8. Prove: Two mxn matrices 4 and B are equivalent if and only if they have the same rank.

If A and B have the same rank, both are equivalent to the same matrix (5.1) and are equivalent to each

other. Conversely, if 4 and B are equivalent, there exist non-singular matrices P and Q such that B = PAQ.
By Theorem VII, 4 and B have the same rank.

9. A canonical set for non-zero matrices of order 3 is

100 100
I, [{)28]=010, [élg]=ooo
000 000

A canonical set for non-zero 3x 4 matrices is
0 00
1000 7, 0 10 0 I, 0 10
[7; 0] = o 1 0 o] =010 0}, =loooo
0 0 00
0010 0 000 0 00O

10. If from a square matrix 4 of order n» and rank ry, a submatrix B consisting of s rows (columns) of A
is selected, the rank rg of B is equal to or greater than r+s-—n

The normal form of 4 has n-ry rows whose elements are zeroes and the normal form of B has $—71p IOWS
whose elements are zeroes. Clearly

n—rn > s —n

from which follows T > / + s —n as required.
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

SUPPLEMENTARY PROBLEMS

L oo s 3 4 5 6 7
123¢ b2l B 4 5 6 7 8
1322 2 5-4 6
Find the rank of (a) {2 35 1] (®) . (0) (@ {5 6 7T 8 9f
2434 “1-3 2-2 10 11 12 13 14
1345 374686 2 4-1 8§

15 16 17 18 19
Ans. (a)2, (b)3. (c) 4, (d)2

Show by considering minors that A4, A" /T, and A" have the same rank.
Show that the canonical matrix C. row equivalent to a given matrix 4, is uniquely determined by 4.

Find the canonical matrix row equivalent to each of the following:

- 1234] [to0 1/9] [1 11 3] [1o00
() 12—3}\,[10-7] (b 341 2|™f0 10 1/9 ¢y j2 1-3-6|~lo100
> o-af ol 2 4312) {001 11/9 3-3 1 2] Joo12
' N B F 1-1 1 11 100-1;
3212m010_1 1-1 2 31| _jo1o 01
@ [2-1 2 5001 1 ©d2 2 1 02 foo1 20
563 2 (0000 1 1-1-33] [000 ooj
1 3-1-3] looo o A

Write the normal form of each of the matrices of Problem 14.

7
Ans. (ay [1, 01, (B).(e) (I3 0] (d) l}f 8:' (e) [03 8]

(a) From I3 form Hi,. Hy(3). His(—4) and check that each HA effects the corresponding row transformation.
(b) From I, form K,,. K5(—1). K4s(3) and show that each AK effects the corresponding column transformation.
(¢) Write the inverses HI; Hy' (3, Hig(—4) of the elementary matrices of (a). Check that for each H, H-H "= 1.
(d) Write the inverses Kgi, K;l(—l), KZE(B) of the elementary matricesof(b). Check that for each K, KK i
03 0 a i i 0 14
(e) Compute B = Hyp-Hy(3)-Hin(~4) = [1 0 ~4| and € = H,.(-4)-H,(3) -Hi, = 11/3 0 0}.
00 1 0 01
(f) Show that BC = CB =1 .
(a) Show that K;;=H;. . K/(k) = Hyk). and K[ (k)= H,(k).

(b) Show that if R is a product of elementary column matrices. R’ is the product in reverse order of the same
elementary row matrices.

Prove: (a) AB and BA are non-singular if 4 and B are non-singular n-square matrices.
(b) AB and BA are singular if at least one of the n-square matrices 4 and B is singular.

If P and Q are non-singular, show that 4, P4, AQ, and PAQ have the same rank.
Hint. Express P and Q as products of elementary matrices.

136~-1
Reduce B = |1 4 5 1] tonormal form N and compute the matrices F, and @, such that P,BQ, = N.
154 3
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21. (a) Show that the number of matrices in a canonical set of n-square matrices under equivalence is n +1.

(b) Show that the number of matrices in a canonical set of mxn matrices under equivalence is the smaller of
m+1 and rn+1.

124 4
22. Given 4 = |1 3 2 6| ofrank 2. Find a 4-square matrix B # 0 such that 4B = 0.
25610
Hint. Follow the proof of Theorem X and take

0000

-1 0000

0B = abcd

e f gh

where a, b, ..., h are arbitrary.

23. The matrix A of Problem 6 and the matrix B of Problem 20 are equivalent. Find P and Q such that B = PAQ.

24. If the mxn matrices 4 and B are of rank n and rp respectively, show that the rank of A+B cannot exceed
rtr.
4" 'B

25. Let A be an arbitrary n-square matrix and B be an n-square elementary matrix. By considering each of the
six different types of matrix B, show that |4B| = |4|.|B]|.

26. Let A and B be n-square matrices. (a) If at least one is singular show that [AB]| = |4]|-|B|; (&) If both are
non-singular, use (5.5) and Problem 25 to show that |4B| = |4]|-|B|.

27.Show that equivalence of matrices is an equivalence relation.
28. Prove: The row equivalent canonical form of a non-singular matrix 4 is [ and conversely.

29. Prove: Not every matrix 4 can be reduced to normal form by row transformations alone.
Hint. Exhibit a matrix which cannot be so reduced.

30. Show how to effect on any matrix 4 the transformation Hij by using a succession of row transformations of
types (2) and (3).

31. Prove: If 4 is an mxn matrix, (m <n), of rank m then AA4” is a non-singular symmetric matrix. State the
theorem when the rank of 4 is < m.



Chapter 6

The Adjoint of a Square Matrix

THE ADJOINT. Let 4 = [aij] be an n-square matrix and otij be the cofactor of a;: then by definition,

g1 Uo1 Uny

.. . o 4 o
(6.1) adjoint A = adj 4 = | 2 72?2 n2
QRay Oop Uy

Note carefully that the cofactors of the elements of the ith row (column) of 4 are the elements
of the ith column (row) of adj A.

Example 1. For the matrix 4 =

W N =
w W N
B N W

Og1=6, Qo= -2, Oig= =3, Ogy=1, Moo= =5, Uog=3, Ug =5, Oz =4, Ogg=-1

6 1 -5
and adj A = -2 -5 4
-3 3 —1
See Problems 1-2.
Using Theorems X and XI of Chapter 3, we find
G117 Qo Cip | | %11 P Uy
(6.2) Aadj Ay = Qo1 G ... Gop| | Ao oo ... Opo
Apy Ay Ann| | X1n Qop Ann
=diag(l4], 14, .., 4y = 4.1, - (adjaya
Example 2. For the matrix 4 of Example 1, |A’ = -7 and
1 23 6 1 -5 -7 0 O
AadjA) = 23 2|}-2-5 4 = 0-7 0 = =1
3 3 4]11-3 3 -1 0 0 -7
By taking determinants in (6.2), we have
. n .
(6.3) 4l Jadial = (4" = laaj4].l4]
There follow
I. If A is n-square and non-singular, then

I 7n-1

(6.49) ladj4| = |4

49
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II. If A is n-square and singular, then

0

A (adj A) (adj Ay A4

If A is of rank < n—1, then adjA=0. If A is of rank n—1, then adjA is of rank 1.

See Problem 3.

THE ADJOINT OF A PRODUCT. In Problem 4, we prove
II. If A and B are n-square matrices,

adj AB

(6.5)

MINOR OF AN ADJOINT. In Problem 6, we prove

Jirdos - dn . .
1V. Let i i be an m-square minor of the n-square matrix 4 = [a;;],
1s by vees by 7
Jm+1r Jmao oo n i A
let ; ; ; be its complement in 4, and
Tmatr bgaor oo Iy
J1s Jor oo In . .
let i, Gy oen, iy denote the m-square minor of adj4 whose elements occupy the
JirJor oo
same position in adj 4 as those of Ai1 i im occupy in A.
Then
‘7.1'~7.2""’jm ‘7.m+1:]4m+2’-~-:jn
S m
(6.6) VU N B ES DRV LR I FA N
where s = iy+io+ o +lpy+tji+jot o+ jp-
If in (6.6), A is non-singular, then
Ju Jor oo Jm Jmerdmaos o0 in
_ _ S TfL—l. ; . i
6.7 i | = AT
When m = 2, (6.7) becomes
a. . (x. . . . . . js»jzp y]n
(6.8) 067’.1,].1 (x‘”'Qrf.l = (_1)$1+742+]1*]Q ‘Al . Aisrizl: i
i,Je o2 "
= 'A’ . algebraic complement of
When m =n -1, (6.7) becomes
Jirder oo Jn-1 in*in ‘AVL‘Q
(6.9) i1ig, cnyina| = (D iy sy
When m = n, (6.7) becomes (6.4).

adj B - adj 4

o
Aiy i,
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SOLVED PROBLEMS

b A, o 4 b
1. TheadjointofA:[a]is[“ ?1:|= ]
cd ®ro Ooo -¢c a
- =
34| 23] (23
43| “fasl 34
123 7 6 -1
2. The adjoint of 4 = |1 3 4f is |- |1 4 D3y J180 ) 1 o021
L1 3 13 13 14 L2 1
13 |12 12
14] |14 13]

3. Prove: If 4 is of order n and rank n -1, then adj4 is of rank 1.

First we note that, since 4 is of rank n—1, there is at least one non-zero cofactor and the rank of adj A
is at least one. By Theorem X, Chapter 5. the rank of adjA4 is at most n —(n—1) = 1. Hence, the rank is
exactly one.

4. Prove: adj AB = adjB . adj4.

By (6.2) AB adjAB = |AB|.I - (adjAB)AB
Since AB-adjB-adjd = A(B-adjB)adid = A(|B|-nadi4 - |Bl(4adjay = 1B|-la|.1 = |4Bl.s
and (adjB - adj4)4B = adiBiadi ) 4IB - adiB-|al-1-B - |4liaiBrBl - |4B|.1

we conclude that adj AB = adjB-adjd

5. Show that adj(adjd) = |4|" *. 4, if 4] £ 0.

By (6.2) and (6.4),

adj4 - adj(adj4) = diag(ladel, |ade’. ladel)
n-1 n-1 n-1
= aiag A" [a"T 1AM
Then
n-1
A-adid-adj(adidy = |al".
n-1
4l agjaasay = [a"". 4
n-2
and adj(adidy = |a]" .4
Ji Jos vees Im )
6. Prove: Let i i be an m-square minor of the n-square matrix A = [a;:],
1 b2 ey By J
Jm+1 fmeo e Jn . .
let ims1rimag -o., iy | D€ its complement in A, and
J1s Jos s Jm . .
let M’&: i, ...,1,| denote the m-square minor of adj4 whose elements occupy the same
. ) Ju o e m
position in adjA as those of Aiw ip, ...,y | OCCUDY in 4. Then
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Jas G eer I msas dmas enr i
Al .\ M . - (=17 4" | 4; . ;
i1, dgy os b T S
where s = li4+io+ rtig+jitjot oty
From
_ _} - _
Yf Gl T Cdn 3 adpa 7 Tdn Ri gy gy 7 %y (00 0
]
. . .. | .. |
Yo Yol Y. 9n | to.0m+ to.Jn OCHJQ 067'2‘]2 OL’fm T2 :0 0 0
................... e S
| |
g g1 Figdo R g % in iy Im O('iQ'JWL dtm Jm :0 0 -0
____________________ e o
| |
] |
i 1, 2 1, Vag ] i, o4 o, d i '1 0 -+ 0
mr1J1 T penJo m+dm m+1Jm+1 m+1In b Jme1 2 Im+1 moJm+1
................... U N RO SPIP
] |
1 ]
| |
................... L e veen e N
] |
[} ]
Latn'jl nJ2 %indn ' Yindnes nn J OC1’1 In 1o.Jn tmadn 100 - 1
|A| 0 0 :ailvjm+1 %y, in, _1
|
0 ‘AI 0 E ai?-jm+1 'LQJn
|
|
|
o o e Ll ey G e
1
- e —— =~ e e e e . e — — —
|
|
0 0 0 ! Ut I+l 41 Jy
]
.......... L e
t
|
.......... L e e e e et e e
|
l
L 0 0 0 'l 'anjm+1 7"n,n]n
by taking determinants of both sides, we have
S‘A‘ |Mj1-j2- s Jm 'A*m Jm+1 Jner In
=D ’ 1;1' ’L2v '--vim - Y41 im+2 -~--7:n

where s is as defined in the theorem. From this. the required form follows immediately.

7. Prove; If 4 is a skew-symmetric of order 2n, then |A| is the square of a polynomial in the elements
of A.

By its definition, lAt is a polynomial in its elements; we are to show that under the conditions given
above this polynomial is a perfect square.

The theorem is true for n=1 since, when 4 = [ 0 8] 1A' = a?.
—a

Assume now that the theorem is true when n=% and consider the skew-symmetric matrix 4 = [a,;j] of

0

B C
order 2k + 2. By partitioning. write 4 = where E =
D E a 0

a
2k+1, Qk*{|. Then B is skew-sym-

2k+2, ok+1
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metric of order 24 and, by assumption, le = fQ where f is a polynomial in the elements of B.

If ocij denotes the cofactor of aij in A, we have by Problem 6, Chapter 3, and (6.8)

Rok+1, k41 Ook+o ohst _ 0 Ookso, ok+y _ ’AI . BI
Ook+1, ok+2  Olok+o pheo ®ok+1, okto 0
Moreover, Qok+o ok+1 = —0ok+1, op+o ; hence,
a 2
lA"fQ = “§k41,2k+2 and lal = {M}
a perfect square.
SUPPLEMENTARY PROBLEMS
8. Compute the adjoint of:
500 2
123 1 23 102
1102
()]0 1 2|, 5 ]0 1 2 (cy |2 1 of, (d)0021
000 001 321
1001
00 1 2 P) 2004
1-2 1 14— 26 0 —16
Ans. @) lo 0 -2}, by Jo 1 24, (c) |-2 -5 4}, (d) 103 —s
00 1 0 0 1 1 -2 1 200 10
9. Verify:
(a) The adjoint of a scalar matrix is a scalar matrix.
(b) The adjoint of a diagonal matrix is a diagonal matrix.
(¢) The adjoint of a triangular matrix is a triangular matrix.
10. Write a matrix 4 # 0 of order 3 such that adjA4 = 0.
11. If 4 is a 2-square matrix, show that adj(adjA) = 4.
-1 -2 -9 -4 -3 -3

12. Show that the adjoint of 4 - 2 1 -2]| is 34"and the adjoint of A4

2 -2 1 4 4 3
13. Prove: If an n-square matrix 4 is of rank <n-1, then adj4 = 0.
14. Prove: If 4 is symmetric, so also is adjA.

13. Prove: If 4 is Hermitian, so also is adjA4.

1 0 1] is 4 itself.

53

16. Prove: If A is skew-symmetric of order n, then adjA is symmetric or skew-symmetric according as » is odd

or even,
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17.

18.

19.

20.

21.

22.

23.

24.

THE ADJOINT OF A SQUARE MATRIX [CHAP. 6

Is there a theorem similar to that of Problem 16 for skew-Hermitian matrices?

For the ellementary matrices, show that

(a) adj Hij = —'H'Lj

(by adj H; (k) = diag(1/k.1/k.....1/k.1.1/k,....1/k), where the element 1 stands in the ith row

(c) adj H,;_jl(k) = Hij(k)- with similar results for the K’s.

Prove: If 4 is an n-square matrix of rank n or n—1 and if H,...H,-H,-4 ‘Ky-Ko...K, = A where Ais
I, 0
I, or nt , then
0 0
: Lt . ! . -1 -1 4
adj4 = adjiKy; -adjiK, ...adjK; -adiA-adjH, ...adjH, -adjH,
Use the method of Problem 19 to compute the adjoint of

1110
2332
A of Problem7, Chapter b

(a) 7 pters (b) 1923 9

4 6 7 4

3 ~-14 2 -2 2
7 -3 -

14 -2 2 -2

Ans. (@) | -1 1 o], ) 0 0 0 o
-1 0 1

-7 1 -1 1

Let A = [a,;j] and B = [k —“137'] be 3-square matrices. If S(C) = sum of elements of matrix C, show that

S(adj A) = S(adjB) and ‘Bl = k - S(adj 4y — IA‘

. . o B (1-1)?
Prove: If 4 is n-square then | adj(adjA) | = |4] .
Let 4, = ["ij] ((.j =1,2,...,n) be the lower triangular matrix whose triangle is the Pascal triangle; for
example,
1 0 0 0
A, = 1 1 0 0
1 2 1 0
1 3 3 1
Define bij = (—1)1;+ja1;j and verify for n = 2, 3, 4 that
) adid, = byl = 4

Let B be obtained from A by deleting its ith and pth rows and jth and ¢th columns. Show that
%ij  pj
o,

iq g
is the cofactor of a;; in 14].

= PP Bl

where OL,;]-



Chapter 7

The Inverse of a Matrix

-1
IF 4 AND B are n-square matrices such that A8 = BA — [, B is called the inverse of 4, (B=A ) and
A is called the inverse of B, (A:B‘l).

In Problem 1, we prove

I. An n-square matrix 4 has an inverse if and only if it is non-singular.

The inverse of a non-singular n-square matrix is unique. (See Problem7, Chapter2.)
IL If 4 is non-singular, then 4B = AC implies B - C.

THE INVERSE of a non-singular diagonal matrix diag (%, ks, ..., k) is the diagonal matrix

diag (1/ky, 1/ky, ..., 1/k,)

It A A, .

, As are non-singular matrices, then the inverse of the direct sum diag (4, 4,,
Ay is

diag (4, 45, ..., A7)

Procedures for computing the inverse of a general non-singular matrix are given below.

INVERSE FROM THE ADJOINT. From (6.2) 4adjd = fAf -I. If 4 is non-singular

Focn/’/ﬂ (x21/’A| co Ony/ AI-
o/ 1Al anr 4] a4
(1.1) A A
|4l
[t/ 1Al e/ (4] 1AL
123 -7 6 -1
Example 1. From Problem 2, Chapter6, the adjoint of 4 =1 3 4] is 1 0 -1
143 1 -2 1
) 7/2 -3 3
Since [Al:—2_ A7 adj 4 = |-4 0 5
|A| -5 1 -4

See Problem 2.
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INVERSE FROM ELEMENTARY MATRICES. Let the non-singular n-square matrix 4 be reduced to I
by elementary transformations so that

Hy..Hy-H-A-K,-K, ... K, = PAQ = I

Then 4 = P Q_1 by (5.5) and, since (B_l)—1 =B,

-1 -1 -1
(1.2) A = (P70 = Q-P = K;-K,... Ky H,... Hy- H,
Example 2. From Problem 7, Chapter 5, _ . _ }
100100 1 -30][10-3
HH AK K, = 010}|-110]-4-|]0 10}|J01 o} = 1[I
|_—101_L001_ 0 01]{00 1
. _1-30T_10—3' 100l 100 7 -3 -3
Then 4 = KKHH, = |6 10]|lo1 of|-110 010 = |-1 1 o
[0 0 1}|00 1 oo01|l-101 -1 0 1

In Chapter 5 it was shown that a non-singular matrix can be reduced to normal form by row
transformations alone. Then, from (7.2) with Q =/, we have

-1

(1.3) A = P = Hs...HQ-H1
That is,

II. If 4 is reduced to [ by a sequence of row transformations alone, then 4™ is equal
to the product in reverse order of the corresponding elementary matrices.

133
Example 3. Find the inverse of 4 = |1 4 3} of Example 2 using only row transformations toreduce 4 to/.
134

Write the matrix {4 L] and perform the sequence of row transformations which carry 4 into
I5 on the rows of six elements. We have

133100 133, 100 103 4-30 100, 7 -3 -3
[41] = J143i010[>fo10:-110|~010!-1 10{~[o10i-1 1 o0
134001f {001:-101| foo1:-1t o1 l[oo01!-1 0 1
= [, 47]
7 -3 -3
by (7,3). Thus, as 4 is reduced to I, I is carried into AT-1-1 1 of.
-1 0 1

See Problem 3.

INVERSE BY PARTITIONING. Let the matrix 4 = [ai,j] of order n and its inverse B = [bij] be par-
titioned into submatrices of indicated orders:

v PP PP By, 5 Bis
(pxp) ' (pxq) (pxp). (px Q)
————— - and el where p+g=n
Aoy ) Apo Boy ' By
(gxp) ' (gxq) (gxp) (gx q)
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Since AB = BA =1,, we have

1.4 (i) Ay By + A,Byy = Ip (lii) By Ayq + Boogdyy = 0
. (i) A11Bip + 415B5, = 0 (iv) BpyAip + Boods, = Iq
Then, provided 4,, is non-singular,
Byy = Ap + (A7) A1) (Apy A Boy = —£& (Ao A1)
(1.5) N _1 4
By, = - (455 415)¢ By, = &

where & = Aoy ~ Apy(A1; A1p).
See Problem 4.

In practice, A,, is usually taken of order n -1. To obtain Azll, the following procedure is
used. Let

4. e @ Q11 G2 Q13 Q44

C. = Q11 Gy C. = 1oz s G, = Gy Qoo Ggg Ooy
2 = o, ayl’ 8 = |G21 Qoo Qo3 |, * T lay, a5, ag5 ag T

21 2 3y Ggp Gsg 1 2 O3z 4

Q41 Qao Qsg CGaa

After computing G,", partition G, so that Ay, =[ass) and use (7.5) to obtain G;'. Repeat the proc-
ess on G, after partitioning it so that 4,,=[as4], and so on.

w

Example 4. Find the inverse of 4 =

Take Ay = [1 :].
TR IE N I o

£ = Ay — Ay (Asdyy) = [4]-[1 3][2] = [1], and &= [1]

e

3
4 3|, using partitioning.
3

>

_[:;] Aps=[13]. and 4,5=[4]. Now

S
i
)

1

Then
1 -1 -1 —1 4 -3 3
Byy = Ay + (A1 A1) (Andyy) = [_1 1]+[0][1]‘[1 0]
_[e-9], 3o} _[7-3
-1 1 ool " |J-1 1
1 -1 -3
Byp = —(d1410)¢ = [0]
-1 —1
By = =& (A5415) = [-1.0]
-1
Byy = f = [1]
5. B 7T -3 =3
and A= i -1 1 0
By By
-1 0 1

See Problems 5-6.
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THE INVERSE OF A SYMMETRIC MATRIX. When 4 is symmetric, Ajj= 0lj; and only 3n(n+1) cofac-
tors need be computed instead of the usual n2 in obtaining A™ from adj 4.

If there is to be any gain in computing A" as the product of elementary matrices, the ele-

mentary transformations must be performed so that the property of being symmetric is preserved.

This requires that the transformations occur in pairs, a row transformation followed immediately
by the same column transformation. For example,

0 b c . a b ... 7
b a ... b0 ¢
C ot C ..
H12 K12 =
a b ¢ a 0 ¢
0
Hyy (- B¢ Kut-% = |°

-3

However, when the element o in the diagonal is replaced by 1, the pair of transformations are
H(1/\/a) and K,(1/+/a). In general, v/a is either irrationalor imaginary; hence, this procedure
is not recommended.

The maximum gain occurs when the method of partitioning is used since then (7.5) reduces to

By, = Aﬁ + (AIiAm)f—l(AﬁAm)/y By, = BZIQ
(7.6) 1 1
312 = - (A111A12)é‘:- ’ BQQ = {:n

where f = AQQ - A21(A3A12)-
See Problem 7.

When 4 is not symmetric, the above procedure may be used to find the inverse of A4, which
is symmetric, and then the inverse of 4 is found by

(7.7 AT =yt

SOLVED PROBLEMS

1. Prove: An n-square matrix 4 has an inverse if and only if it is non-singular.

Suppose 4 is non-singular. By Theorem IV, Chapter 5, there exist non-singular matrices P and @ such
that PAQ =1. Then A =P Q™" and A% =(Q.P exists.

Suppose A"1 exists. The A-A_1 =1 is of rank n. If A were singular, AA71 would be of rank <r; hence,

A is non-singular.
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'y 3 m [ 4-3 < [ as5 -3/5
2. (a) When A = i 4], then [4] =5, adj4 = [_1 2]' and 4 = [—1/5 2/5]'

[2 3 1 1 -5 1 Lo - T
(b) When A =|1 2 3|, then |4l =18, adjA=| 7 1 -5|, and 4 = 5| 7 1-5)
312 -5 17 1 -5 7 1
24 3 2
36 5 2
. Pind the i of 4= .
3. Find the inverse 295 9 -3
4514 14
24 3 2/1000] [123/2 1'1/2000[ 1 23/2 1! 1/2000
[47,] - |36 5 210100] |36 5 2:0 100} fo 01/2—1:—3/2.100
“ 7 |25 2-370010f |25 2 -3 0 010 |o 1 -1 -51 -1 010
4514 1410001| |45 14 14, 0 001 {0-3 8 10| -2 001
1 23/2 1! 1/2000]| [107/2 11,5/20-20
So 1 -1 s 101 o1 -1 5110 10
0 01/2~-1!'-3/2100| |00 1 -2/ -32 00
0-3 8 10! -2001 00 5 -5, -50 31
100 18! 13 -7-20 100 18, 13 =7 -2 0
~j010-77-4 2 10| [010-7]-4 2 1 o0
001~25~3 2 00 JoO1-2/-3 2 0 0
000 5i10~10 31| {000 11 2-23/51/5
1000 -23 29 —64/5 —18/5
o100 10 -12 26/5 1/5
0010, 1 -2 6/5 2/5
0001, 2 -2 3/5 1/5
= [, 47

-23 29 —64/5 -18/5

. 0 -
The inverse is A4~ = 1 12 28/5 /5 .
1 -2 6/5 2/5

2 =2 3/5 1/5

(1) Ay4Biy + AioByy = 1 (iit) BoiAyy + Boodyy = 0
4. Solve 3 . for By, Bis, By,, and B,,.
(i) A1 By + A1oBy = 0 (iv) Boy Ay, + Boydyy =1
4 .. -1 4 1 -1
Set By, = £ From (i), By, = —(A341)E ; from (iii), Boy = — & (ApA5y); and, from (i), By, =

w 1 -1 1 1 1
Ay — A1 AipBoy = Ay + (A11410)E (ApAy).

Finally, substituting in (iv),

4 ) 1
=& (Ao Ay Agp + E Ay = 1 and & = Ao — (Apd11)Aqs
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5. Find the inverse of A4 = by partitioning.

= DN e
[l ~ VLR V)
—_ 0 W W
— 00 DD e

1
(a) Take G5 = |1
2

s W N

3
3| and partition so that
3

Ay = [i 2:\ Ao = [g] Aoy = [2 4] and Ao = (3]
T e I i 1 R R B
;o AQQ_A21(A-111A12) = [3]1-12 4][2] = [-3]. and f‘l = [-1/3]
A+ (AA) EN A Ay = [ 3 "2] + H[‘l]b ol [ Y —2] ) [2 0]
-1 1 0jl 3 -1 00
_1 3 —6
" 3|-3 3

_1 _ ~1 —1 -1
By, = -‘(/‘111/‘112)§1 = %[3] Byy = =& (AxyAqy) = %[2 0], Baop=¢& = [—

Then Biy

H

]

0
3 -6 3
- B B
and Gy = {BM Bm] = % -3 3 0
21 22 9 0 -1
123 1
(b) Partition 4 sothat Aq = |1 3 3], Ap=12| 4o,=[1 1 1], and A,p=[1].
243 3
) 3-6 3 . 0 ,

Now A11 = % -3 3 0], A11A12 = T},;‘ 31 A21A1i = %[2 -3 2],

2 0 -1 -1

0
&= [1-Tr 11l 3] = [%] and &7 =[3]

3 -6 3 0 3 -6 3 0 0 1-2 1
Then B11=%—330+% 3[3]%[2~32]:%—330+% 9 6| =|1-2 2
2 0 -1 -1 2 0 -1 2 3 -2 0 1 -1
0
312 = -3\l BQ]_ = ["'2 3 _‘2]- BQQ = [3]
1
1-2 1 0
a,nd A—l - Bll 812 - 1 _2 2 —3
Boy Boy 0 1-~1 1
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100 133 4 7 -3 -3
By Example 3, the inverse of Hyz4 = |0 0 1]4=|143|=8B is B = |-1 1 0| Then
010 134 -1 0 1
7-3-3[ [100 7 -3 -3
AV = B'Hyy = |-1 1 ol-loo1] = |-1 o 1
-1 0 1 010 -1 1 0

Thus, if the (n—1)-square minor A4, of the n-square non-singular matrix 4 is singular, we first bring a
non-singular (n—1)-square matrix into the upper left corner to obtain B, find the inverse of B, and by the prop-
er transformation on B obtain 4.

2 1 -1 2
. . . 1 3 2 -3
7. Compute the inverse of the symmetric matrix A4 = 12 1 -1l
2 -3 -1 4
21 -1
Consider first the submatrix G5 = 1 1 3 2| partitioned so that
-12 1

2 1 -1
A4q = [1 3]- Asp = |:2:| Az = [-1 2], Aoy = [11]
4 3/5 -1/5 4 3/5 -1/5|[-1 -1
A = = =
Now “ [—1/5 2/5]’ adaz [—1/5 2/5][ z] [ 1]'
£ = =ttty - W= L1217 L L) wne

-1 - - i L
S B Y S SRR ol B s Y
- - 5 —3% -

BiQ = [— :] Bgi = ["% %] 322 = [—ZL]

Ni— Nj—

. 3-8
and G = = -
3 0 3 -1 5
-5 5 -5
Consider now the matrix 4 partitioned so that
1 -1 2
Ay = | 13 2| A = (-3 Ay = [2 -3 1], Ay = [4]
-12 1 -1
4 ) 1 3 -5 B -1/5 .
Now Ay = 1o 3 -1 5{, Apdp = 2/5 &=1[18/51], & = [5/18].

-5 5 -5 -2
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2 5 -7 1
Then By = | 5-1 5| By = Li-2|. By = Ll1-210] By - [5/18]
-7 5 11 10
2 5-7 1
and A—l _ 1 5 -1 5 -2
18]-7 5 11 10
1 -2 10 5

SUPPLEMENTARY PROBLEMS

8. Find the adjoint and inverse of each of the following:

1 2 -1 2 3 4] 2 3 1200
(@) |-1 1_2 (b>43i (c);45 d)0300
a —_ N .

2 -1 1 124 3586 ( 0021
- 000 3

1-2/3 0 0

3 -1 5T -10 4 9 1 -3 2 0 1;3 0 0

1 _ 1 4 - _ - d

Ans. Inverses (a)14 5 3 -1]1. (b)5 15 —4 -14|, (¢©) 3 3 -1}, (&) 0 0 1/2 —1/6
-1 5 3 -5 1 6 2 -1

. 0 0 o0 1/3

9. Find the inverse of the matrix of Problem 8(d) as a direct sum.

10. Obtain the inverses of the matrices of Problem 8 using the method of Problem 3.

1 3 32 1
11 1 1 34 27 2 523
1 2 3 -4 2332 2 334 14 334
11. Same, for the matrices (a) . (b . (e o @ J1 3 41 1
2 3 5 -5 5739 3 6 32
1 1 11-1
3 -4 -5 8§ 2323 412 0 8
_ _ 1-2-12 2
2 16 -6 4 —144 36 60 21
1] 22 41 -30 -1 1 48 -20 -12 -5
Ans. (@) 75 ) ==
@) 18| _10 _44 30 -2 (©) 18 48 -4 -12 -13
L4—13 6 —1 | 0 12 12 3

L1 7 2 30 ~20 —15 25 -5
30 —11 —~18 7 —8

by L|7L -7 -3 16 (dy 21-30 12 21 -9 6
-15 12 6 -9 6

&l

211 1 -1 0

1 -1 -1 2
L I_15 -7 -6 -1 -1

12. Use the result of Example 4 to obtain the inverse of the matrix of Problem 11(d) by partitioning.

13. Obtain by partitioning the inverses of the matrices of Problems 8(a), 8(b), 11(a) — 11(¢).
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14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

1 2-1 2 0122
. . 2 2-1 1 1123
Obtain by partitioning the inverses of the symmetric matrices (a) 11 1 -1l (b 9 9 9 3
2 1-1 2 2333
1 -1 -1 -1 -3 3-3 2
-1 -1 -1 1 3 -4 4 -2
Ans@) =2| sl P 45 s
-1 1 -1-1 2 -2 3 -2

Prove: If 4 is non-singular, then AB = AC implies B = C.

Show that if the non-singular matrices 4 and B commute, so also do
(@ 4" and B, (b)) A and B, (cy A" and B Hint. (@) A ABYAT = AN BAyA™.

Show that if the non-singular matrix 4 is symmetric, so also is A—i.
Hint: A7 = [ = (A4"Y = (44,

Show that if the non-singular symmetric matrices 4 and B commute, then (a) A™B, (by AB™, and () A B
are symmetric. Hint: (a) (A'lB)' = (BAfl)’ = (Aﬂl)'B' - AR,

Anmxn matrix 4 is said to have a right inverse B if AB =1 and a left inverse C if CA =1. Show that 4 has
a right inverse if and only if 4 is of rank m and has a left inverse if and only if the rank of 4 is n.

13
Find a right inverse of 4 = |1 4 if one exists.
13

[ IR V]
oW oW

132
-1
Hint. The rank of 4 is 3 and the submatrix S = |1 4 1| is non-singular with inverse S . A right inverse of
135

; 17 -9 —5
S _
A is the 4x3 matrix B = _1ft o8
0 3l-1 0 1
0 0 0
7 -3 -3
Show that the submatrix 7 = }1 4 3] of 4 of Problem 20 is non-singular and obtain 0 0 o as another
134
-1 0 1
right inverse of 4.
7--1-1a :1)) }1 ;
Ohtain -3 1 0 4| as a left inverse of 33 4l where a, b, and ¢ are arbitrary.
-3 0 1 ¢
‘ 000

1347
Show that 4 =1 4 5 9| has neither a right nor a left inverse.
2358
Prove: If ‘,411 # 0, then A1 A12 = |A411i "AQQ - A21A21A12I .
o1 Aos

If |I+4] #0, then (J+4)™ and (I — 4) commute.

Prove:(i) of Problem 23, Chapter 6.



-

Chapter 8

Fields

NUMBER FIELDS. A collection or set S of real or complex numbers, consisting of more than the ele-
ment 0, is called a number field provided the operations of addition, subtraction, multiplication,
and division (except by 0) on any two of the numbers yield a number of S.

Examples of number fields are:

(@) the set of all rational numbers,

(b) the set of all real numbers,

(c) the set of all numbers of the form a+ b\V3, where a and b are rational numbers,
(d) the set of all complex numbers a+ bi, where a and b are real numbers.

The set of all integers and the set of all numbers of the form b\/g, where b is a rational
number, are not number fields.

GENERAL FIELDS. A collection or set S of two or more elements, together with two operations called
addition (+) and multiplication (.), is called a field F provided that a, b, c,... being elements of
F, i.e. scalars,

Ay

ot

o
@

»

-

S N "
o

a+b is a unique element of F

a+b="b+a

a+(b+c) = (a+b) +¢

For every element ¢ in F there exists an element 0 in F such that ¢+0 =0+¢ = a.
For each element o in F there exists a unique element —a in F such that a+(-a) = 0.
ab = a-b is a unique element of F

ab = ba

(ab)e = a(bc)

For every element a in F there exists an element 1 # 0 such that 1-a=a-1 = a.

For each element a # 0 in F there exists a unique element a™* in F such that a-a* =

at.a= 1.

a(b+e¢)=ab+ac

(a+b)e = ac+ be

In addition to the number fields listed above, other examples of fields are:

(e) the set of all quotients fﬁ%l of polynomials in x with real coefficients,

J(x)

a

(f) the set of all 2x2 matrices of the form [b _2] where @ and b are real numbers.

(g) the set in which a+a = 0. This field, called of characteristic 2, will be excluded hereafter.
In this field, for example, the customary proof that a determinant having two rows identical
is 0 is not valid. By interchanging the two identical rows, we are led to D = -D or 2D = 0;
but D is not necessarily 0.

64
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SUBFIELDS. If S and 7T are two sets and if every member of S is also a member of T, then S is called
a subset of T.
1f S and T are fields and if S is a subset of T, then S is called a subfield of 7. For exam-
ple, the field of all real numbers is a subfield of the field of all complex numbers; the field of
all rational numbers is a subfield of the field of all real numbers and the field of all complex
numbers.

MATRICES OVER A FIELD. When all of the elements of a matrix A are in a field F, we say that
"A is over F''. For example,

A= 1 1/2 is over the rational field and B = 11+ L, is over the complex field
1/4 2/3 2 1-3i

Here, A is also over the real field while B is not; also 4 is over the complex field.

Let 4.B,C,... be matrices over the same field F and let F be the smallest field which
contains all the elements; that is, if all the elements are rational numbers, the field F is the
rational field and not the real or complex field. An examination of the various operations de-
fined on these matrices, individually or collectively, in the previous chapters shows that no
elements other than those in F are ever required. For example:

The sum, difference, and product are matrices over F.

If A is non-singular, its inverse is over F.

If A ~I then there exist matrices P and ( over F such that PAQ =] and [ is over F.

If A is over the rational field and is of rank r, its rank is unchanged when considered over
the real or the complex field.

Hereafter when 4 is said to be over F it will be assumed that F is the smallest field con-
taining all of its elements.

In later chapters it will at times be necessary to restrict the field, say, to the real field.
At other times, the field of the elements will be extended, say, from the rational field to the real

field. Otherwise, the statement "A4 over F" implies no restriction on the field, except for the
excluded field of characteristic two.

SOLVED PROBLEM

1. Verify that the set of all complex numbers constitutes a field.

To do this we simply check the properties 4, ~A5, My— M5, and D, —Dy. The zero element (4,) is 0 and
the unit element (M) is 1. If a+bi and c+di are two elements, the negative (Ag) of a+bi is —a - bi, the
product (M1) is (a+bi)(c+di) = (ac—bd) + (ad+bc)i; the inverse (Mg) of a+bi £0 is

1 _ a-=>bi _ a _ b

a+ b a? + p2 a® + 82 a®+ b2
Verification of the remaining properties is left as an exercise for the reader.
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10.

SUPPLEMENTARY PROBLEMS

. Verify (a) the set of all real numbers of the form a+5V5 where a and b are raiional numbers and

(b) the set of all quotients g((x; of polynomials in x with real coefficients constitute fields.
. x

. Verify (a) the set of all rational numbers,

(b) the set of all numbers a+bV3, where a and b are rational numbers, and
(¢) the set of all numbers a+bi, where a and b are rational numbers are subfields of the complex field.

-b
. Verify that the set of all 2x2 matrices of the form l:z :l where a and b are rational numbers, forms a field.
a

Show that this is a subfield of the field of all 2x2 matrices of the form ,:Z _bJ where a and b are real numbers.
a

. Why does not the set of all 2x 2 matrices with real elements form a field?

. A set R of elements a,b,c,... satisfying the conditions (44, 4o, Aq, A4 Ag; My, My, Dy, Do) of Page 64 is called

a ring. To emphasize the fact that multiplication is not commutative, R may be called a non-commutative
ring. When a ring R satisfies M,, it is called commutative. When a ring R satisfies M, it is spoken of as
a ring with unit element.

Verify:
(@) the set of even integers 0,12, +4, ... is an example of a commutative ring without unit element.
(b) the set of all integers 0, +1,+2,+3, ... is an example of a commutative ring with unit element.
(c) the set of all n-square matrices over F is an example of a non-commutative ring with unit element.

a -b
(d) the set of all 2x2 matrices of the form [b ] where ¢ and b are real numbers, is an example of a
a

commutative ring with unit element.

. Can the set (a) of Problem 6 be turned into a commutative ring with unit element by simply adjoining the ele-

ments +1 to the set?

. By Problem 4, the set (d) of Problem 6 is a field. Is every field a ring? yIs every commutative ring with unit

element a field? \ .

00
. Describe the ring of all 2 x2 matrices [a b:l, where a and b are in F. If 4 is any matrix of the ring and

00
L= [1 at show that LA = A. Call L a left unit element. Is there a right unit element?

u —v
Let C be the field of all complex numbers p+¢i and K be the field of all 2x2 matrices [v ”:l where p, q,

a —b
u, v are real numbers. Take the complex number a+bi and the matrix l:b a] as corresponding elements of
the two sets and call each the image of the other.

2 - 0 -4
Write the im f , 7 3+ 2i, 5.
(a) Write the image o [3 2] [4 0] ¢ ;z

(b) Show that the image of the sum (product) of two elements of K is the sum (product) of their images in C.
(c) Show that the image of the identity element of K is the identity element of C.
(d) What is the image of the conjugate of a+bi?

a —b
(e) What is the image of the inverse of [b ]?
a

This is an example of an isomorphism between two sets.



Chapter 9

Linear Dependence of Vectors and Forms

THE ORDERED PAIR of real numbers (x, x,) is used to denote a point X in a plane. The same pair
of numbers, written as [ x,, %, ], will be used here to denote the two-dimensional vector or 2-vector

0X (see Fig. 9-1).

. %2 Xa(mq + xo1.%10 + 220)
2

X(x1, 22)

X1(x11, %19)
]
— \ X241

0 " 0 %11 + %01 e

Fig.9-1 Fig. 9-2

If X,= (%, %5,] and X;= [x,,,x,,] are distinct 2-vectors, the parallelogram law for
their sum (see Fig. 9-2) yields

X, = X+ X = [x11+x21,x12+x22]

Treating X, and X, as 1x2 matrices, we see that this is merely the rule for adding matrices giv-
en in Chapter1. Moreover, if k is any scalar,

kX, = [hxqq, Fxip)

is the familiar multiplication of a vector by a real number of physics.

VECTORS. By an n-dimensional vector or n-vector X over F is meant an ordered set of n elements x;

of F, as
(9.1) X = (%1, %0, es %]
The elements x,, %, ..., x, are called respectively the first, second, ..., nth components of X.

Later we shall find it more convenient to write the components of a vector in a column, as

%o

(9.1) X = Ix,%...x)] =

Xn,

Now (9.1) and (9.1) denote the same vector; however, we shall speak of (9.1) as a row vector
and (9.1) as a column vector. We may, then, consider the pxq matrix A as defining p row vectors
(the elements of a row being the components of a g-vector) or as defining ¢ column vectors.
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The vector, all of whose components are zero, is called the zero vector and is denoted by 0.
The sum and difference of two row (column) vectors and the product of a scalar and a vec-
tor are formed by the rules governing matrices.
Example 1. Consider the 3-vectors

X,=031.-4], Xo=[2.2,-3], Xg=[0.-4,1], and X,=[-4,-4,6]
(@) 2X; - 5X, = 2[3.1.-4]-5[2.2.-3] = [6.2.~8]1-[10,10,-15] = [-4,-8,7]
by 2Xo+ X4 = 2[2.2,~3]1+[-4.-4,6] = [0,0,0] = 0
(¢) 2X, —3X, - X3 = O
(@) 2X, — Xy — Xg+ X, = 0

The vectors used here are row vectors. Note that if each bracket is primed to denote col-
umn vectors, the results remain correct.

LINEAR DEPENDENCE OF VECTORS. The m n-vectors over F

Xo = (%4, %0, ey %9y ]
9.2) Xo = [%4, %pg, eoeey Xom )
Xn = [%py %noo oo F
are said to be linearly dependent over F provided there exist m elements %, k,, ..., &, of F, not

all zero, such that
(9.3) BaXy + B Xo + oo + Xy, = 0
Otherwise, the m vectors are said to be linearly independent.

Example 2. Consider the four vectors of Example 1. By (b) the vectors X, and X, are linearly dependent;
so also are X,, X,, and X5 by (¢) and the entire set by (d).

The vectors X; and X, however, are linearly independent. For,assume the contrary so that
Ea Xy + koXo = [Bky+ 2o, ky + 2Ky —dky - 3k,] = [0,0,0]

Then 3kq + 2k, = 0, ky + 2k, = 0, and -4k, — 3k, = 0. From the first two relations k4 = 0
and then k, = 0.

Any n-vector X and the n-zero vector 0 are linearly dependent.

A vector X,., is said to be expressible as a linear combination of the vectors X,, X, ..., X,
if there exist elements %y, &y, ...,k of F such that
Xpvs = B Xy + B X, + -0+ B X,

BASIC THEOREMS. If in (9.3), %; # 0, we may solve for

1
X; = —--I;{le1+ et by Xig R Xigg + -0 4 By Xy} or

1

(9.4) X; = X+t X g 48550, X+ e+ 5, X,

Thus,

I. If m vectors are linearly dependent, some one of them may always be expressed as
a linear combination of the others.
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1. If m vectors X, X,, ..., X,, are linearly independent while the set obtained by add-
ing another vector X,,, is linearly dependent, then X ,, can be expressed as a linear com-
bination of X, X,, ..., X, .

Example 3. From Example 2. the vectors X;, and X, are linearly independent while X,,X,, and X; are
linearly dependent, satisfying the relations 2X; —3X,— Xq= 0. Clearly, X5 = 2X, - 3X,.

M. If among the m vectors X,, X,, ..., X, there is a subset of r<m vectors which are
linearly dependent, the vectors of the entire set are linearly dependent.

Example 4. By (b) of Example 1, the vectors X, and X, are linearly dependent; by (d), the set of four
vectors is linearly dependent. See Problem 1.

IV, If the rank of the matrix

X11 %12 X1n
21 oo 2n

(9.5) A = , m<n,
Xmi Xmo +v- Xpp

associated with the m vectors (9.2) is r<m, there are exactly r vectors of the set which
are linearly independent while each of the remaining m-r vectors can be expressed as a
linear combination of these r vectors. See Problems 2-3.

V. A necessary and sufficient condition that the vectors (9.2) be linearly dependent
is that the matrix (9.5) of the vectors be of rank r<m. If the rank is m, the vectors are
linearly independent.

The set of vectors (9.2) is necessarily linearly dependent if m>n.

If the set of vectors (9.2) is linearly independent so also is every subset of them.

A LINEAR FORM over F in n variables x,, x,, ..., x,, is a polynomial of the type
7
(9.6) 2 oaix; = x4 Gy + e+ apiy
1=1

where the coefficients are in F.

Consider a system of m linear forms in n variables

i = w4 apx, + e+ Qi Xn,
fo = Gpx + ks + e+ aoyx
(9.7) 2 onXn,
fn = A%y + QpoXo + o+ + Gy %Xy
and the associated matrix
A1 Qg Qn
Aoy Qoo Qop,
A =
Ap1  Cpo Amn
If there exist elements 4, k%, ..., &, , not all zero, in F such that

kify + kofy + o+ kmﬁn = 0
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the forms (9.7) are said to be linearly dependent; otherwise the forms are said to be linearly
independent. Thus, the linear dependence or independence of the forms of (9.7) is equivalent
to the linear dependence or independence of the row vectors of A.

Example 5. The forms f; = 2%q — %5+ 3%x5, fo = x4 + 2%, + dx5, f3 = 4% — Txy, + x5 are linearly depend-

2 -1 3
ent since 4 = |1 2 4| isofrank 2. Here, 3f; ~ 2fob —fg = 0.
4 -7 1

The system (9.7) is necessarily dependent if m>n. Why?

SOLVED PROBLEMS

1. Prove: If among the m vectors X,, X,, ..., X,, there is a subset, say, X, A,, ..., X,, r<m, which is
linearly dependent, so also are the m vectors.

Since, by hypothesis, kX, + kX, + +- +%,X, = 0 with not all of the £’s equal to zero, then
ByXy + bpXo + o 4 BX ¥ 0Ky + e + 00X, = 0

with not all of the £’s equal to zero and the entire set of vectors is linearly dependent.

2. Prove: If the rank of the matrix associated with a set of m n-vectors is r<m, there are exactly r
vectors which are linearly independent while each of the remaining m-r vectors can be expressed
as a linear combination of these r vectors.

Let (9.5) be the matrix and suppose first that m <n . If the r-rowed minor in the upper left hand comer
is equal to zero, we interchange rows and columns as are necessary to bring a non-vanishing r-rowed minor
into this position and then renumber all rows and columns in natural order. Thus, we have

X1 K12 ... Xar
Xo1 Koo ... Koy
A = # 0
Xr1 Xro Xrr
Consider now an (r+1)-rowed minor
X117 X12 x1r X1g
Xo1 Xoo Xor Xoqg
V I - 0
Xr1 Xro Xryr Xrq

where the elements %pj and %iq.are respectively from any row and any column not included in A, Let kq, ko,
....ky+1 = A be the respective cofactors of the elements X1q. %oq. -+ Ky %pg Of the last column of V. Then,
by (3.10)
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kyxqi + koxoj + o+ Kpxpi + knixpi = 0 E=12,..1n

1l
o

and by hypothesis kixig + koxog + ++ + krxrg + krii¥pg =V

Now let the last column of V be replaced by another of the remaining columns, say the column numbered
u, not appearing in A. The cofactors of the elements of this column are precisely the k’s obtained above
so that

Bixgy, + koxoy + o0 4 kyxypy + kppgxpy = 0
Thus.
Byxgp + koxop + oo + hpxpt + kpogxpy = 0 (t=1.2,..n)

and, summing over all values of ¢,

ki Xy + koXo + oo 4+ kypXp + kppaXp = 0
Since kypiq = A # 0, Xﬁ is a linear combination of the r linearly independent vectors Xi, X,,....X,. But X¢
was any one of the m-r vectors X,yq. Xyyo. ..., Xp; hence, each of these may be expressed as a linearcom-

bination of Xy, Xo. ..., X,.

For the case m >n, consider the matrix when to each of the given m vectors m-n additional zero compo-
nents are added. This matrix is [4! 0]. Clearly the linear dependence or independence of the vectors and
also the rank of 4 have not been changed.

Thus, in either case, the vectors X,.,..... X, are linear combinations of the linearly independent vec-
tors X;.X,,....X, as was to be proved.

3. Show, using a matrix, that each triple of vectors

X, =11.2,-3,4] X,=[2,3,1,-1]
(@) Xo=13,-1,2,1] and by X,=1[2,3,1,-21]
Xs=1[1,-58,-7] Xg=1[4,6,2,-31

is linearly dependent. In each determine a maximum subset of linearly independent vectors and
express the others as linear combinations of these.

1 2-3 4
(a) Here. {3 -1 2 1| is of rank 2; there are two linearly independent vectors, say X, and X,. The minor
1 -5 8 -7
L 2 1 2 -3
l3 1 l # 0. Consider then the minor |3 —~1 2]. The cofactors of the elements of the third column are
1 -5 8

respectively —14, 7, and —7. Then -—14X; + 7TX, — TXg = 0 and X5 = -2X, + X,.

231-1
(b) Here {2 3 1 —2| is of rank 2; there are two linearly independent vectors, say X, and X,. Now the
46 2 -3
2-113
. 2 3 . 2 -1
minor 5 3 = 0; we interchange the 2nd and 4th columns to obtain |2 —2 1 3] for which # 0.
4-3 26 -
2 -1
The cofactors of the elements of the last column of |2 —=2 1] are 2,2, -2 respectively. Then
4 -3 2

2X1+ 2X2_2X3 =0 and XS = X1+X2
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4.
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Let P(1,1,1), P(1,2,3), B(3,1,2), and P(2,3,4) be points in ordinary space. The points P, P,
and the origin of coordinates determine a plane 77 of equation

(1) = x-2y+z = 0

O = = R
S N R
O W o N
—_ e e ek

Substituting the coordinates of P, into the left member of (i). we have

2341 2340
2 34
1111 1110
= = 111 = 0
1231 123090
1 23
0001 0001
2 3 4
Thus, P, lies in 7. The significant fact here is that [P, Pi.PQ]’= 1 1 1} is of rank 2.
1 2 3

We have verified: Any three points of ordinary space lie in a plane through the origin provided the matrix
of their coordinates is of rank 2.

Show that Py does not lie in 77.

SUPPLEMENTARY PROBLEMS

Prove: If m vectors X;, X5, ..., X, are linearly independent while the set obtained by adding another vector
Xp,1 is linearly dependent, then X,,; can be expressed as a linear combination of Xq, Xp, ..., X,,.

. Show that the representation of X,,, in Problem5 is unique.

m N n m
Hint: Suppose Xp,. = 2 kX; = 2 s;X; and consider 3 (k;—s;)X;.
7~=1 1=1 =1

Prove: A necessary and sufficient condition that the vectors (9.2) be linearly dependent is that the matrix

(9.5) of the vectors be of rank r<m.

Hint: Suppose the m vectors are linearly dependent so that (9.4) holds. In (9.5) subtract from the ith row the
product of the first row by s,, the product of the second row by s,, ... as indicated in (9.4). For the
converse, see Problem 2.

. Examine each of the following sets of vectors over the real field for linear dependence or independence. In

each dependent set select a maximum linearly independent subset and express each of the remaining vectors
as a linear combination of these.

X, = [1.2.1] X, = [2.1,8,2.-1]
X, = [2.-1,3,2] )
X, = [2.1.4] X, = [4.2.1,-2.3]
(@ X, = [1.3.4,2] (d) () -
X; = [4.5.6] X, = [0.0.5.6,-5]
Xs = [3,-5.2.2] )
X, = [1.8,-3] X, = [6,3,~1.-6,7]
XS = 2X1+X2 X9 = 2X1-—X2
Ans. (@) Xa = 2X, -~ X b ¢
@ 4s 1= A2 ® x, - 5x, - 2x, © x, - 2, - x,
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10.

11.

12.

13.

14.

15.

16.

. Why can there be no more than » linearly independent n-vectors over F?

Show that if in (9.2) either X; = Xj or X; = an, a in F, the set of vectors is linearly dependent. Is the
converse true?

Show that any n-vector X and then-zero vector are linearly dependent; hence, X and 0 are considered proportional.
Hint: Consider kX + k50 = 0 where &y = 0 and ky # 0.

(@) Show that X. = [1.1+i.i], X, = [i,—i.1—i] and X5 = [142i,1—i,2—i] are linearly dependent over
the rational field and, hence, over the complex field.

(by Show that X, = [1.1+4.¢], X, = [i,~i.1~i]. and Xg = [0,1-2¢,2—i] are linearly independent over
the real field but are linearly dependent over the complex field.

Investigate the linear dependence or independence of the linear forms:
A o= 3% — %+ 2xg + %4 fi = 2xq — 3%, + 4x5 — 2%,
(@) fo = 2%+ 3%y — x5+ 2x, (b) fo = 3%+ 2x,— 2x5+ 5x,
fs = Bxy — 9x, + 8x5 — x, foa = 5%y — %o+ 2x5+ x,

Ans. (a) 3fy —2f,—fz = 0

Consider the linear dependence or independence of a system of polynomials
n 7n-1 .
P; = ajpx + ajux + ot GipgX + agy (i=1,2,....m)

and show that the system is linearly dependent or independent according as the row vectors of the coeffi-
cient matrix

.alo (111 e aln

Aop  Ooy Aon
A =

Gmo  Opg Gnn

are linearly dependent or independent, that is, according as the rank r of 4 is less than or equal to m.

If the polynomials of either system are linearly dependent, find a linear combination which is identically
Zero.

Pp= 2% 322+ 4x - 2 Pl o= 20"+ 3x® - ax®? 1 5x + 3
(@ P, = 2%% ~ 6x + 4 () P, = x®+ 2x%- 3x + 1

Py = 2% - 242+ & Py = x*+2x%- x24+ x+2
Ans. (a) 2Py + P, - 2P5 = ¢ b)Y PL+ P, —2P, = 0

Consider the linear dependence or independence of a set of 9x2 matrices M, = [: Z:] My = [; ’{] Mg = [Z 3]
over F.
Show that k My + koMo + kgMg = 0. when not all the k’s (in F) are zero, requires that the rank of the
abecd
matrix le f g A| be < 3. (Note that the matrices M, .My My are considered as defining vectors of four
p q st
components.)

Extend the result to a set of mxn matrices.
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17.

18.

19.

20.

21.

22.

23.

24.

LINEAR DEPENDENCE OF VECTORS AND FORMS [CHAP. 9
123 213 0 3 3
Show that |3 2 4. |3 4 2], and |3 0 6| are linearly dependent.
13 2 221 043

Show that any 2x2 matrix can be written as a linear combination of the matrices [(1) g] l:g (1)] [g g] and

[g (1)] Generalize to nxn matrices.

If the n-vectors X, X, ....X, are linearly independent, show that the vectors Y;.Y,. ....Y,. where ¥j =

n
2 ai;X;. are linearly independent if and only if 4 = [“ij] is non-singular.

j=t

If A is of rank r, show how to construct a non-singular matrix B such that 4B = [Ci_ Co, ....Cr, 0, ...0]
where Cy, C,. ....C, are a given set of linearly independent columns of 4.

Given the points Py(1,1.1,1), Po(1,2,3.4), Ps(2,2.2,2). and Py(3, 4,5,6) of four-dimensional space.

(a) Show that the rank of [P;, P;]" is 1 so that the points lie on a line through the origin.
(b) Show that [Py, Py, Ps Ps]" is of rank 2 so that these points lie in a plane through the origin.
(¢) Does Pg(2,3,2,5) lie in the plane of (b)?

Show that every n-square matrix 4 over F satisfies an equation of the form
AP 4 kAP kAP TR b kA bRl = O
where the k; are scalars of F.

2
Hint: Consider I. 4,42, 4%, ..., 4™ in the light of Problem 16.

Find the equation of minimum degree (see Problem 22) which is satisfied by

4 11 by A 1 - © 4 10
- = i c
(@ 1 1) ¢ 1 1 1 1

Ans. (&) A2 —24 =0, (b) A>-24+21=0, (c) A°-24+I=0

In Problem 23(b) and (¢), multiply each equation by A7 to obtain  (b) AP =1-54, (o) A"1=2]-A, and

thus verify: If 4 over F is non-singular, then A~" can be expressed as a polynomial in 4 whose coeffi-
cients are scalars of F.



Chapter 10

Linear Equations

DEFINITIONS. Consider a system of m linear equations in the n unknowns x4,%,,..., %y

G11%; + Gioxp + ..+ Ay = My
Ap1%y + AooXp + .o + GopXy = ho

(10.1)
- Apa%y+ ApoXo + ... + Gppxy = hy

in which the coefficients (a’s) and the constant terms (A’s) are in F.

By a solution in F of the system is meant any set of values of x;, %o, ..., %,, in F which sat-
isfy simultaneously the m equations. When the system has a solution, it is said to be consistent;
otherwise, the system is said to be inconsistent. A consistent system has either just one solu-
tion or infinitely many solutions.

Two systems of linear equations over F in the same number of unknowns are called equiv-
alent if every solution of either system is a solution of the other. A system of equations equiv-
alent to (10.1) may be obtained from it by applying one or more of the transformations: (a) in-
terchanging any two of the equations, (b) multiplying any equation by any non-zero constant in
F, or (¢) adding to any equation a constant multiple of another equation. Solving a system of

consistent equations consists in replacing the given system by an equivalent system of pre-
scribed form.

SOLUTION USING A MATRIX. In matrix notation the system of linear equations (10.1) may be written

as
11 Q19 Ain||*1 hy
(10.2) Go1 Gop ... Gopllxa| _ (Ao
Am1 Amo Ann||(*n hn
or, more compactly, as
(10.3) AX = H
where 4 = [aij] is the coefficient matrix, X = [xy, 2, ...,%,]" and H = [hy, ho, ..., by 1"

Consider now for the system (10.1) the augmented matrix

14 Gyo ... @iy hy
(10.4) A1 Qpp ... Gopho| _ (4 H]
ami Gpo anmn hn

(Each row of (10.4) is simply an abbreviation of a corresponding equation of (10.1); to read the
equation from the row, we simply supply the unknowns and the + and = signs properly.)

75
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To solve the system (10.1) by means of (10.4), we proceed by elementary row transformations
to replace 4 by the row equivalent canonical matrix of Chapter 5. In doing this, we operate on
the entire rows of (10.4).

% + 2% + x5 = 2
3x1 + Xg — 2x3 = 1
Example 1. Solve the system .
4xy — 3% — x3 = 3
2x%1 + 4% + 2x3 = 4
1 2 12 [1 2 1 2 1 2 1 2
3 1-21 0 -5 -5 — 0 1
The augmented matrix [4 H] = ~ ’ 3~ 11
4 -3 -1 3 0 —-11 -5 -5 0 —-11 -5 -5
2 4 2 4 LO 0 0 0 0 0 0 o
[1 0 -1 0O 1001
~ 101 11| _]0100
00 11 0011
0 0 0 O 0000

Thus, the solution is the equivalent system of equations: x4 =1, %5 =0, g = 1. Ex-
pressed in vector form, we have X = [1, 0, 1]'.

FUNDAMENTAL THEOREMS. When the coefficient matrix 4 of the system (10.1) is reduced to the

row equivalent canonical form C, suppose [4 H] is reduced to [C K], where K= [kq, ks, ... ,km]'.
If A is of rank r, the first r rows of C contain one or more non-zero elements. The first non-zero
element in each of these rows is 1 and the column in which that 1 stands has zeroes elsewhere.
The remaining rows consist of zeroes. From the first r rows of [C K], we may obtain each of
the variables x X ,x (the notation is that of Chapter 5) in terms of the remaining varia-

jQ’ eee
bles ST x]’r+2 e X and one of the kq, ko, ..., k.

I kyy, = kpyp= ... = ky =0, then (10.1) is consistent and an arbitrarily selected set of
values for x; ..., x; together with the resulting values of X0 Fy e s %y constitute
Jrar Xirag In J17 "2 Jr
a solution. on the other hand, if at least one of k., k,,,, ..., k, is different from zero, say

ks # 0, the corresponding equation reads
Ox, + Oxp + ... + 0x, = k; # O

and (10.1) is inconsistent.

In the consistent case, 4 and [4 H] have the same rank; in the inconsistent case, they
have different ranks. Thus

1. A system AX = H of m linear equations in » unknowns is consistent if and only if
the coefficient matrix and the augmented matrix of the system have the same rank.

II. In a consistent system (10.1) of rank r<n, n-—r of the unknowns may be chosen
so that the coefficient matrix of the remaining r unknowns is of rank r. When thesen—r
unknowns are assigned any whatever values, the other r unknowns are uniquely determined.

xq + 2% — 3xg — 4x, = 6
Example 2. For the system % + 3%+ xg — 2x4 = 4
2%, + 5%x9 — 2x5 — 5x4 = 10
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12-3-4 8 [1 2 -3 -4 ] 10-11 -8 10
[4 H] = 13 1-2 4l~]|0o1 4 2-2]1~|01 4 2-2
2 5 -2 -5 10 01 4 3-2 00 0 1 0

[1 0 -11 0 10
~lo1 40-2]= [ck]
00 01 0

Since 4 and [4 H] are each of rank r = 3, the given system is consistent: moreover,
the general solution contains n—r = 4—3 = 1 arbitrary constant. From the last row
of [C K], x4 = 0. Let x5 =a, where a is arbitrary; then x; = 10+1la and x, = —2—4a.
The solution of the system is given by x; = 10+1la, x5 = —2—4a, x5=a, x4 =0 or
X = [10+11a, —2—4a, a, 0]'.

If a consistent system of equations over F has a unique solution (Example 1) that solution
is over F. 1If the system has infinitely many solutions (Example 2) it has infinitely many solu-
tions over F when the arbitrary values to be assigned are over F. However, the system has
infinitely many solutions over any field ¥ of which F is a subfield. For example, the system
of Example 2 has infinitely many solutions over F (the rational field) if o is restricted to rational
numbers, it has infinitely many real solutions if @ is restricted to real numbers, it has infinitely
many complex solutions if a is any whatever complex number.

See Problems 1-2.

NON-HOMOGENEOUS EQUATIONS. A linear equation

1% + agxpy + ... ta,x, = h

is called non-homogeneous if % # 0. A system AX = H is called a system of non-homogeneous

equations provided # is not a zero vector. The systems of Examples 1 and 2 are non-homogeneous
systems.

In Problem 3 we prove

OI. A system of n non-homogeneous equations in n unknowns has a unique solution
provided the rank of its coefficient matrix 4 is n, that is, provided |A | # 0.

In addition to the method above, two additional procedures for solving a consistent system
of n non-homogeneous equations in as many unknowns AX = H are given below. The first of
these is the familiar solution by determinants.

(a) Solution by Cramer’s Rule. Denote by Ai' (i=1,2,...,n) the matrix obtained from 4 by re-
placing its ith column with the column of constants (the A’s). Then, if [4]| # 0, the system
AX = H has the unique solution

’Al! |42 A
(10.5) Xy = m, Xg = I—AT X, = ’IAn',
See Problem 4.
2% + x5 + 5x3 + x, = 5
%1 + xp - 3xg — 4x, = ~1

Example 3. Solve the system using Cramer’s Rule.

3xq + 6xp — 2x3 + x, =

ZX:L + 2X2 + 2x3 fand 3x4 = 2
We find
21 5 1 51 5 1
113 —4 -11-3 -4
A = = — = -
4] 3 6—-2 1 120, ‘A1l 8 6 -2 1 240
22 2-3 22 2-3
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2 5 56 1 21 5 1
1 -1 -3 —4 11-1-4
iAQ} " 13 g-2 1| ~ —24 IAS‘ 136 s 1| °°
2 2 2-3 2 2 2 -3
21 5 5
and ’A4| = ; é :2 —; = -06
22 2 2
4] —2e0 I P T SR /1 I T
Then xq = lAl_—120 =2, x5 = l ‘ —_120—5, Xq = ! ( —_120—0, and
_lag 95 _4
T4 T 120 s

(b) Solution using A1 If \A i # 0, A~' exists and the solution of the system AX = H is given
by

(10.6) A2 AX = A*H o X =A*H
2%y + 3x5 + x5 = 9 231
Example 4. The coefficient matrix of the system %1 + 2%9 + 3x5 = 6 is A4 =41 3
3xq + xp + 2x5 = 8 3
L 1-5 17
From Problem 2(b), Chapter 7, 4™ = —| 7 1 —5]. Then
18
-5 7 1
1 1 -5 7|9 1 35
AT e AX = X = A7'H = s I
-5 7 1]|8 5

The solution of the system is x; = 35/18, x, = 29/18, x5 = 5/18.
See Problem 5.

HOMOGENEOUS EQUATIONS. A linear equation

(10.7) ayx; + apxp + ... ta,x, = 0
is called homogeneous. A system of linear equations
(10.8) AX =0

in n unknowns is called a system of homogeneous equations. For the system (10.8) the rank
of the coefficient matrix 4 and the augmented matrix [4 0] are the same; thus, the system is
always consistent. Note that X =0, that is, x; =%, = ... =x, =0 is always a solution; it is
called the trivial solution.

If the rank of 4 is n, then n of the equations of (10.8) can be solved by Cramer’s rule for the
unique solution x; = x5, = ... =x, = 0 and the system has only the trivial solution. If the rank of
A is r<n, Theorem II assures the existence of non-trivial solutions. Thus,

IV. A necessary and sufficient condition for (10.8) to have a solution other than the

trivial solution is that the rank of 4 be r < n.

V. A necessary and sufficient condition that a system of n homogeneous equations in

n unknowns has a solution other than the trivial solution is lA | = 0.

VI. If the rank of (10.8) is r < n, the system has exactly n-r linearly independent solu-
tions such that every solution is a linear combination of these n-r and every such linear

combination is a solution. See Problem 6.
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LET X, and X, be two distinct solutions of AX = H. Then AX,=H, AX,=H, and A (X,-X,) =AY = 0.
Thus, Y = X, — X, is a non-trivial solution of AX = 0.

Conversely, if Z is any non-trivial solution of AX = 0 and if Xﬁ is any solution of 4X = H,
then X =X, +7 isalsoa solution of AX = H. As Z ranges over the complete solution of 4X = 0,
Xﬁ + /7 ranges over the complete solution of AX = H. Thus,

VII. If the system of non-homogeneous equations AX = H is consistent, a complete
solution of the system is given by the complete solution of AX = 0 plus any particular so-

lution of AX = H.

x1 — 2%y + 3xq

set x; = 0; then x5 =2 and x, = 1. A particular
x9 + x5+ 2x4

Example 5. In the system {

xq~ 2% +3x9 = 0 1
X4+t Xo+2x3 =0 is [~7a,a, 34},

where a is arbitrary. Then the complete solution of the given system is

X = [-Ta,a,3a]" + [0,1,2]' = [-7a, 1+a, 2+3a]'

solution is Xp = [0, 1, 2]". The complete solution of{

Note. The above procedure may be extended to larger systems. However, it is first
necessary to show that the system is consistent. This is a long step in solving the
system by the augmented matrix method given earlier.

SOLVED PROBLEMS

%+ %o~ 2x3 + x4, + 3x5 =
1. Solve 2%) — %o + 2%3 + 2x, + 6x5 =
3%, + 2% ~4%5 — 3x, — 9x5 =

Solution:

The augmented matrix

1 1-2 1 31 1 1-2 1 31 1 1-2 1 31
(4 H] = 2-1 2 2 62 ™~ ]0-3 6 0 00| ~ |0 1-2 0 00
3 2-4-3-93 |0 -1 2-6-18 0 0~1 2-6-18 0
10 0 1 31 10 0131
~ lo1-2 0o 00| ~ [61-2000
100 0—-6-18 0 00 0130
10 0001
~ 1-2000
00 0130

Then x; = 1, xo— 2x5 = 0, and x,+3x5 = 0. Take x5 =a and %s = b, where a and b are arbitrary; the complete
solution may be given as x4 = 1, x, = 2a, x3 =a, x4 = —35, xs=b oras X =[1,2a,a,-3b,5]".

%1+ xo + 2x5 + x, = 5
2. Solve {2x; +3x, — x5 — 2x, = 2
4xy + 5x, + 3xg = T
Solution:
11 2 15 11 2 1 5 10 7 5 13
[4H] = {23-1-22~|01-5-4 —8]~ [0 1—-5-4-8
45 3 07 01-5-4 -13 00 0 0-5

The last row reads 0-x4 + 0-x5 + 0.x5 + 0-x, = —5; thus the given system is inconsistent and has no solution.
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3. Prove: A system AX = H of n non-homogeneous equations in n unknowns has a unique solution
provided |4| # 0.

If A is non-singular, it is equivalent to /. When A is reduced by row transformations only to I, suppose
[4 H] is reduced to [/ K]. Then X =K is a solution of the system.

Suppose next that X = L is a second solution of the system; then AK =H and AL = H, and AK = AL.
Since A is non-singular, K = L, and the solution is unique.

4. Derive Cramer's Rule.

Let the system of non-homogeneous equations be

G11%1 + Gy9%p + oo FamAn = by
I Gp1%1 + GooXo + ... taouxy = ho
an1Xq + Ay, 0%X0 + ..o+ anndn = hn

Denote by 4 the coefficient matrix ["ij] and let 0;; be the cofactor of a;; in 4. Multiply the first equa-
tion of (1) by ®44, the second equation by Goy, ...., the last equation by ®pn4, and add. We have

n n n n
2 ajiOyx + 2 ajolinxg + ..+ 3 aipnlinn = 2 hi0y
1=1 1=1 1=1 =1

which by Theorems X and XI, and Probiem 10, Chapter 3, reduces to

hy Q15 ... Gyp
A
1Al-x1 - kg age .. aop | 14,4 sothat x4 = l—ljl—‘
by apy Ann
Next, multiply the equations of (1) respectively by 012, Ooo, ...., Uno and sum to obtain
g1 by @13 .... a1n
a ho a e @ A
{4} %, = 21 "z 728 2"l = |4 sothat x, = \—21
.............. 4]
an1 by ang Ann
Continuing in this manner, we finally multiply the equations of (I) respectively by %1y, Oop ..., Opn
and sum to obtain
011 P al’n_i hl
A
A].x, = |9t femihe o gl sothat wy, = 1\77;1
an1 an, n-1 hy
2x, + %, + Hxg + x, =
Xy * Xp— 3%y — 4dxp = -1 . \ - .
5. Solve the system using the inverse of the coefficient matrix.
3x, + 6x, — 223 + x4 =
2x1 + 2x2 + 2x3 - 3x4 = 2
Solution:
21 5 1 120 120 0 ~120
11-3 -4 1 {-69 —73 17 80
The i A = i — Th
e inverse of 362 1 is 120 | —15 —35 —5 40 en
22 2-3 24 8 8 -—-40
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120 120 0 —120 5 2
x . 1 [-69 -3 17 8of[-1 _ 1/5
T 120 |~15 -35 —5 40 8 0
24 8 8 -—40 2 4/5
(See Example 3.)
x1+ x2+ x:3+ X4 =
6. Solve %y + 3% + 2x5 +4x, = O
2x4 + x%3—- %, = 0
Solution:
[1 11 10 10 11110
[A4H = [132 40 1 30 ~ Jo2130
Lz 1-10 0—2—1—30 00000
11110 10% -5 0
~ Jlo1z3%30f ~ o135 %o
00000 000 0 0

The complete solution of the system is %3 = -za +3b, %, = ~3a— 2b, x5 = a, x, = b. Since the rank of
4 is 2, we may obtain exactly n—r = 4—2 = 2 linearly independent solutions. One such pair, obtained by
first taking a =1, b =1 andthen a =3, b =1 is

%9 =0, xp==2, x3=1, x4 =1 and X9 =—1, xo==3, x3=3, x4 =1

What can be said of the pair of solutions obtained by taking a =b =1 and a =5 = 3?

7. Prove: In a square matrix 4 of order n and rank n-1, the cofactors of the elements of any two rows
(columns) are proportional.

Since |A| =0, the cofactors of the elements of any row (column) of 4 are a solution X, of the system
AX =9 (4'X = 0).

Now the system has but one linearly independent solution since A (A'y is of rank n-1. Hence, for the
cofactors of another row (column) of 4 (another solution X, of the system), we have X, = kX,.

8. Prove: If f1, fo, ..., f, are m<n linearly independent linear forms over F in n variables, then the p
linear forms
m
gj = 1:51 s‘ijf" (]:1,2y--~’P)

are linearly dependent if and only if the m xp matrix [s,.]is of rank r<p.
p if P

The g’s are linearly dependent if and only if there exist scalars 1,89, ...,y in F, not all zero, such

that
m m m
G189 tasge + ...+ ap & = aq 'Lél siqfi + as Els”fi + ...+ ap iél SWfL
3 s £

= . . + . . + el + .o .
(j=1aJ81])f1 (j=1 ajs9i)fo (]_zla]sm])fm
m P

= El(ﬁl ;s =0
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Since the f’s are linearly independent, this requires
4
jélajsij = @184, toags;, oL + aﬁsw = 0 t=12,....,m)
p

Now, by Theorem IV, the system of m homogeneous equations in p unknowns ,2 sij xj =0 has a non-
i=1
trivial solution X =[ay,a,, ...,ab]' if and only if [Sij] is of rank r<p. Y

9. Suppose 4 = [aij] of order n is singular. Show that there always exists a matrix B = U’ij] #0 of
order n such that AB = 0.

Let By, By, ..., B, be the column vectors of B. Then, by hypothesis, 4B, =4B,=...=4B, =0, Con-
sider any one of these, say 4B; =0, or
ay1bet + a1obott o tagpbpyr = 0
ao1 byt * apobott ... taspbpyy = 0
apibit + anobot t+ +taupbpy = 0
Since the coefficient matrix 4 is singular, the system in the unknowns b;+¢, bot, ..., byt has solutions other
than the trivial solution. Similarly, 4B; =0, AB, = 0, ... have solutions, each being a column of B.

SUPPLEMENTARY PROBLEMS

10. Find all solutions of:

Xyt xp + xg = 4
(@) xg — 2% + xg — 3x4 = 1 (c) 2xq4 + Bxp — 2x3 = 3
5

xqy + Txp — Txg =

X + X9 txg + x4 = 0
xg + %o + xg = 4 Xy +xg txg — % = 4
) 1 2 3 ) 1 2 3 4 )
2x4 + 5% — 2x9 = 3 Xq +txg — x5 x4 = —4
X, — %o + x5 + x, = 2
Ans. (@) x4 = 1+2a ~b +3c, xp=a, x3=b, x4=¢
(b) %y = —Ta/3 +17/3, x, = 4a/3 - 5/3, xg=a
@) xg = x5 =1, 23 = —x4 = 2
11. Find all non-trivial solutions of:
+ 2%, + 3 = 0
N Xy — 2% + 3x3 = 0 ) 2x1+ xQ*?)xS
a - =
¢ 2x4 + 5x5 + 6x5 = 0 (e 1 X2 2
3% + 2x, + x5 = 0
2%y — %o + 3xg3 = 0 ‘;xlz 3x’?+2x8+29€4 i g
() { 8% + 2% + x5 = O @ | T2 Mg T ot T
Tx5 — 4xq — Bxq4 = 0
%y — 4%, + 5xg = 0
2%y — 11xy + Txs + 8x4 = O

Ans. (a) x4 =-3a, X% =0, x3=a
(b) xq9= —%x5=—%3 =a

5 3 7 5
d) x4 = —2a +32b, xp=a, xg =—~a—-b, x4=b
1 3 8 2 3%y 2 4
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10 d _ 8 5
12. Reconcile the solution of 10(d) with another x4 = ¢, x5 =d, xq = — 3¢5 ¥a=ge +§d.
112
13. Given 4 = |2 2 4!, find a matrix B of rank 2 such that 4B = 0. Hint. Select the columns of B from
336
the solutions of AX =0

14. Show that a square matrix is singular if and only if its rows (columns) are linearly dependent.

15. Let AX =0 be a system of n homogeneous equations in » unknowns and suppose 4 of rank r =n-1. Show
that any non-zero vector of cofactors [067;1, Aio, o.uy Otm]' of a row of 4 is a solution of 4AX = 0.

16. Use Problem 15 to solve:

Xq — 2x2 + 3X3 = 0 2x1 + BXQ - Xg = 0 2.’151 + 3952 + 4963
@) ®) o (©)
2xq + 5x5 + 6xg = 3xg —4xo + 223 = 0

N
S ©

2x1 — xo + 6xg

Hint. To the equations of (a) adjoin 0x, + Ox, + 0xs = 0 and find the cofactors of the elements of the

1 -2 3
third row of |2 5 6
0 00

Ans. (a) 1= ~2Ta, 25 =0, x3 = 9a or [3a,0,—a]', (&) [2a,~Ta,~174]", (o) [11a,-2a,-44a]

17. Let the coefficient and the augmented matrix of the system of 3 non-homogeneous equations in 5 unknowns
AX = H be of rank 2 and assume the canonical form of the augmented matrix to be

1 0 big bya bis g
0 1 byg bog bos cy
000 0 0 0

with not both of ¢4, c, equal to 0. First choose %3 =%4 = %5 =0 and obtain X, = [Cl,CQ, 0,0,0]' as a solu-
tion of AX =H. Then choose xg =1, x4 = x5 = 0, also X3 =x5=0, x4=1 and %3 =x4 =0, x5=1 to ob-
tain other solutions X,, X5, and X,. Show that these 5—2+1 = 4 solutions are linearly independent.

18. Consider the linear combination Y = s1X1 + 50Xy + 53X +5,X, of the solutions of Problem 17. Show
that Y is a solution of 4X = H if and only if (i) sy+sp+sg+s, = 1. Thus, with 81,80, 3, S4 arbitrary except
for (i), Y is a complete solution of 4X = H.

19. Prove: Theorem VI. Hint. Follow Problem 17 with ¢ = ¢, = 0.

20. Prove: If 4 is an m xp matrix of rank r, and B is a p*n matrix of rank r, such that 4B = 0, then ry + ro £ p.
Hint. Use Theorem VI.

21. Using the 4 x5 matrix 4 = [“ij] of rank 2, verify: In an mxn matrix 4 of rank r, the r-square determi-
nants formed from the columns of a submatrix consisting of any r rows of 4 are proportional to the r-square
determinants formed from any other submatrix consisting of r rows of 4.

Hint. Suppose the first tworows are linearly independent so that @3j = Pa1as1j +pgoasj, @47 = Pa1a1j + pasag;,

(j = 1,2,...,5). Evaluate the 2-square determinants

a1q a1s

O2q Qo2

aig azs a3q ags

, and

G3q aszs G4q Q45

22. Write a proof of the theorem of Problem 21.

23. From Problem 7, obtain: If the n-square matrix A is of rank n-1, then the following relations among its co-
factors hold

(@) Ogjlpy, = Qg 0y, &) dg oy = agag
where (h,i,j,k=1,2,....n).
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24.

25.

26.

27.

28.

29.

30.

31.
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11 1 14 10000
12 3 -4 2 01000
21 1 26 00100

B - . . F B=[4 Hl i

Show that 3 9 1-13 is row equivalent to 00010 TOm L 1 infer that the
12 2-2 4 00001
23-3 11 00000

system of 6 linear equations in 4 unknowns has 5 linearly independent equations. Show that a system of
m>n linear equations in n unknowns can have at most n +1 linearly independent equations. Show that when
there are n +1, the system is inconsistent.

If AX =H is consistent and of rank r, for what set of r variables can one solve?

Generalize the results of Problems 17 and 18 to m non-homogeneous equations in n unknowns with coeffi-
cient and augmented matrix of the same rank r to prove: If the coefficient and the augmented matrix of the
system AX =H of m non-homogeneous equations in n unknowns have rank r and if X4, X5, ..., Xn-r+1 are
linearly independent solutions of the system, then

X = ssXy +s1Xo + o tsp i fnrs
n=r+1

where X s; = 1, is a complete solution.
i=1

In a four-pole electrical network, the imput quantities £, and I; are given in terms of the output quantities
E, and I by
Ey = aEp+bly [El] i [a b] [EQ] . [Eg]
I, = cE, +dls Iy c d||lz I
Show that [El} = l\? _IA][Il] and [El] = i[b lAl][ll} .
E, cl1 —d ||l Iy di1l —cl|iEs

Solve also for E, and I, I; and I, I; and E,.

Let the system of n linear equations in n unknowns AX =H, H # 0, have @ unique solution. Show that the
system AX = K has a unique solution for any n-vector K #0.

1 -1 1 X1 Y1
Solve the set of linear forms 4X = 12 1 3||x.| = Y = |y2| for the x; as linear forms in the y’s.
1 2 3 Xg ¥3

Now write down the solution of 4"X =Y.

Let 4 be n-square and non-singular, and let S; be the solution of AX=E;, (=12, ...n), where E; is the
n-vector whose ith component is 1 and whose other components are 0. Identify the matrix [Sq, So. ..., Sn].
Let A be an m x n matrix with m <n and let S; be a solution of 4X = E;, (i =1,2,...,m), where Ej is the

m-vector whose ith component is 1 and whose other components are 0. If K = [ky, ko, ..., k) . show that

kySy + koSo + ...+ k,S,
is a solution of 4X =K.
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Vector Spaces

UNLESS STATED OTHERWISE, all vectors will now be column vectors. When components are dis-
played, we shall write [x;, x,, ..., %,]". The transpose mark () indicates that the elements are
to be written in a column.

A set of such n-vectors over F is said to be closed under addition if the sum of any two of
them is a vector of the set. Similarly, the set is said to be closed under scalar multiplication
if every scalar multiple of a vector of the set is a vector of the set.

Example 1. (a) The set of all vectors [, x,. x5]" of ordinary space havine equal components (X1 = %o = %)
is closed under both addition and scalar multiplication. For, the sum of any two of the
vectors and & times any vector (k real) are again vectors having equal components.

(b) The set of all vectors [x,, %5, x3]" of ordinary space is closed under addition and scalar
multiplication.

VECTOR SPACES. Any set of n-vectors over F which is closed under both addition and scalar multi-
plication is called a vector space. Thus, if X, X,, ..., Xy are n-vectors over F, the set of all
linear combinations

(11.1) kyXy + kX + o+ Bp X, (k; in Fy

is a vector space over F. For example, both of the sets of vectors (a) and (b) of Example 1 are
vector spaces. Clearly, every vector space (11.1) contains the zero n-vector while the zero
n-vector alone is a vector space. (The space (11.1) is also called a linear vector space.)

The totality , (F) of all n-vectors over F is called the n-dimensional vector space over F.

SUBSPACES. A set 7 of the vectors of V,(F) is called a subspace of W, (F) provided V is closed un-
der addition and scalar multiplication. Thus, the zero n-vector is a subspace of I, (Fy; so also
is W, (F) itself. The set (a) of Example 1 is a subspace (a line) of ordinary space. In general,
if X;,X.....,X,, belong to ¥, (F), the space of all linear combinations (11.1) is a subspace of

Va(F).

A vector space V is said to be spanned or generated by the n-vectors X,, X, ..., X, opro-
vided (a) the X; lie in ¥ and (b) every vector of V is a linear combination (11.1). Note that the
vectors X;, X,, ..., X, are not restricted to be linearly independent.

Example 2. Let F be the field R of real numbers so that the 3-vectors Xro=[1.11) X, = [1.2.37,
Xs=1[1.3.2] and X, = [3.2,1] lie in ordinary space S = VyR). Any vector [a,b,c] of
S can be expressed as

85
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y1 + Yo + ¥z + 3a
1 X1 + yoXo + ¥aXg + yaXa = y1 + 2y2 + 3ya + 2va
¥1 + 3y2 + 2y3 + Ya

since the resulting system of equations

Y1+ ¥2 +t ¥z + 32 = €
(1) y1 + 2 + 3yz + 294 = b
y1 + 3y2 + 2y + Ya = €

is consistent. Thus, the vectors Xj, X, X X4 span S.

The vectors X; and X, are linearly independent. They span a subspace (the plane 77) of
S which contains every vector AX, + kX5, where k and k are real numbers.

The vector X, spans a subspace (the line L) of S which contains every vector hX,, where
h is a real number.
See Problem 1.

BASIS AND DIMENSION. By the dimension of a vector space V is meant the maximum number of lin-

early independent vectors in V or, what is the same thing, the minimum number of lineatly in-
dependent vectors required to span V. In elementary geometry, ordinary space is considered as
a 3-space (space of dimension three) of points (a, b,c). Here we have been considering it as a
3-space of vectors (@, b,c 1. The plane 77 of Example 9 is of dimension 2 and the line L is of
dimension 1.

A vector space of dimension r consisting of n-vectors will be denoted by VnT(F). When r =n,
we shall agree to write ¥, (F) for %Ln(F).

A set of r linearly independent vectors of Vnr(F) is called a basis of the space. Each vec-
tor of the space is then a unique linear combination of the vectors of this basis. All bases of
VJ(F) have exactly the same number of vectors but any r linearly independent vectors of the
space will serve as a basis.

Example 3. The vectors Xy, X,. X5 of Example 2 span S since any vector [a, b, c ] of S can be expressed

as
Yo+ Yo t ¥s
Xy + YoXo + yXs = y + 2yz + 3ys
y1 + 3y2 + 23
Y1+ yof ¥ag = @
The resulting system of equations yi+ 2y + 3ys = b, unlike the system (i). has a u-

Y1+ 3yo+ 2yg = ¢

nique solution. The vectors Xj, X, X3 are a basis of S. The vectors X, Xo. X, are not a
basis of S. (Show this) They span the subspace 77 of Example 2, whose basis is the set Xy, Xo.

Theorems I-V of Chapter 9 apply here, of course. In particular, Theorem IV may bere-
stated as:

I. If X,,X,, ..., X, areasetof n-vectors over F and if r is the rank of the nxm matrix
of their components, then from the set r linearly independent vectors may be selected. These
r vectors span a Vnr(F) in which the remaining m-r vectors lie.

See Problems 2-3.
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Of considerable importance are:

I If X,,X,,...,X, are m<n linearly independent n-vectors of V(F) and if X,,,,
Xpso, ..., Xy are any n-m vectors of ¥, (F) which together with X,, X,, ..., X, form a linearly
independent set, then the set X, X,, ..., X,, is a basis of V,(F).

See Problem 4.

m. 1t X;,X,,....X, are m<n linearly independent n-vectors over F, then the p vectors

m
Y, = X s.X; G=1.2,...,p)

J joq 4]

are linearly dependent if p>m or, when p<m, if [Sij] is of rank r<p.

IvV. 1f Xy, X,,...,X,, are linearly independent n-vectors over F, then the vectors
n
Yo = % ayX; (=12 ....n)

are linearly independent if and only if [aij] is nonsingular.

IDENTICAL SUBSPACES. If JV/{(F) and ,J;(F) are two subspaces of ¥, (F), they are identical if and
only if each vector of ,I}/(F) is a vector of oV (F) and conversely, that is, if and only if each
is a subspace of the other.

See Problem 5.

SUM AND INTERSECTION OF TWO SPACES. Let ¥(F) and ,%F) be two vector spaces. By their
sum is meant the totality of vectors X+Y where X is in V(F)and Y is in Klk(F). Clearly, this

is a vector space; we call it the sum space VnS(F). The dimension s of the sum space of two
vector spaces does not exceed the sum of their dimensions.

By the intersection of the two vector spaces is meant the totality of vectors common to the
two spaces. Now if X is a vector common to the two spaces, so also is aX: likewise, if X and
Y are common to the two spaces so also is aX+5bY. Thus, the intersection of two spaces is a
vector space; we call it the intersection space Vnt(F). The dimension of the intersection space
of two vector spaces cannot exceed the smaller of the dimensions of the two spaces.

V. If two vector spaces Vnh(F) and Kf’(F) have I{LS(F) as sum space and Kf(F) as inter-
section space, then h+k =~ s+¢.

Example 4. Consider the subspace 77, spanned by X, and X, of Example 2 and the subspace 7T, spanned
by X5 and X,. Since 77, and 77, are not identical (prove this) and since the four vectors span
S, the sum space of 77, and 77, is S.

Now 4X, — X, = X,; thus, X, lies in both 7, and 77,. The subspace (line L) spanned
by X, is then the intersection space of 77, and 77,. Note that 77, and 7, are each of dimension
2, S is of dimension 3, and L is of dimension 1. This agrees with Theorem V.

See Problems 6-8.

NULLITY OF A MATRIX. For a system of homogeneous equations AX = 0, the solution vectors X

constitute a vector space called the null space of A. The dimension of this space, denoted by
Ny, is called the nullity of A.

Restating Theorem VI, Chapter 10, we have

VL. If A has nullity N;, then 4X = 0 has Ny linearly independent solutions X, X,, .

e,
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X,{4 such that every solution of AX =0 is a linear combination of them and every such
linear combination is a solution.

A basis for the null space of 4 is any set of N, linearly independent solutions of 4X = 0.
See Problem 9.
VII. For an mxn matrix 4 of rank r, and nullity N,

(11.2) i + Ny = n

SYLVESTER’S LAWS OF NULLITY. If 4 and B are of order n and respective ranks r; and rz, the
rank and nullity of their product AB satisfy the inequalities

rap > r4timp-—-n
(11.3) Nig > Ny, N> Ny

Nig < Ny+ Np See Problem 10.

BASES AND COORDINATES. The n-vectors

E, = [1,0,0,...,0), E,=1[0,1,0,....0), ... E,=[00,0..,1}

are called elementary or unit vectors over F. The elementary vector Ej, whose jth component
is 1, is called the jth elementary vector. The elementary vectors E,, E,, ..., En constitute an
important basis for V,, (F).

Every vector X = [, %y, ..., %;)" 0f ¥,(F) can be expressed uniquely as the sum
7
X = 3 xE; = xmE; + wmEy + o+ xEy
=1
of the elementary vectors. The components x;, %, ..., %, of X are now called the coordinates of

X relative to the E-basis. Hereafter, unless otherwise specified, we shall assume that a vector
X is given relative to this basis.

Let Zy,Z,, ..., Z, be another basis of ¥,(F). Then there exist unique scalars a,, g, ..., Oy,
in F such that

n

X = E a;7; = a2y + ayly + -+ anZy
These scalars ay, oo, ..., @, are called the coordinates of X relative to the Z-basis. Writing
Xy = lay, ap, ..., @,]", we have
(11.4) X = [Z,7Z,....2,)X; = Z.Xz

where Z is the matrix whose columns are the basis vectors Z;, Z,, ..., Zy.

Example5. If Z,=[2.-1.31. Z,=[1.2.-1), Z5= [1.-1,-1]" is a basis of ¥ (F) and Xz =[1.2.3)
is a vector of W(F) relative to that basis. then

2 1 1 1 7
X = [Z21.20231X; = |-1 2 -1]|2] = = [7.0-2Y
3 -1 -1]]3 -2

relative to the E-basis. See Problem 11.



CHAP, 11] VECTOR SPACES 89

Let W,, W, ..., W, be yet another basis of ¥, (F). Suppose Xy = [by, b, ..., b,]" so that
(11.5) X = [(mW. .. BXy =_-W-X

From (11.4) and (11.5), X = Z-X; = W-Xy and
(11.6) X, = W'.Z.X, = PX

where P = W'Z.

Thus,

VIII. If a vector of V;,(F) has coordinates X; and Xy respectively relative to two bases
of ¥, (F), then there exists a non-singular matrix P, determined solely by the two bases and
given by (11.6) such that Xy = PX;.

See Problem 12.

SOLVED PROBLEMS

1. The set of all vectors X = [, x5, %5, 41", where x, + % + 23+ x, = 0 is a subspace V of V(F)
since the sum of any two vectors of the set and any scalar multiple of a vector of the set have
components whose sum is zero, that is, are vectors of the set.

131
. 2 4 0] . ,
2. Since 5 40 is of rank 2, the vectors X, =[1,2,2,11, X,=[3.4,4.3]", and X,=01.0,0,1)
1 31
are linearly dependent and span a vector space KQ(F).

Now any two of these vectors are linearly independent; hence. we may take X; and X,, X; and X5, or X,
and X5 as a basis of the V(F).

1 4 2 4

. 1 3 1 . , , : ,

3. Since L2 o is of rank 2, the vectors X, ={1,1,1,0], X,=[4.3,2,-11, X;=[2.1,0,-17,
0-1-1-2

and X,=1[4,2,0,-2]" are linearly dependent and span a V. (F).

For a basis, we may take any two of the vectors except the pair X, X,.

4. The vectors X,, X,, X; of Problem 2 lie in V,(F). Find a basis.

For a basis of this space we may take Xy, X, X4 = [1.0.0.0), and X5 = [0.1.0.0] or X,. X, X, =
[1.2.3.4). and X, = [1,3.6.8]", .... since the matrices [X,, X,, X,. X5] and [X,. X,. Xs. X,] are of rank
4.
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5. Let X;=[1,2,1], X,=[1,2,3), X;=[3,65), ¥, =[0,0,1), ¥, =[1,2,6]" be vectors of V(F).
Show that the space spanned by X,, X,, X, and the space spanned by ¥,, Y, are identical.

First. we note that X; and X, are linearly independent while X5 = 2X, + X,. Thus, the X; span a space
0f2dimension two, say 1V§(F). Also, the Y; being linearly independent span a space of dimension two, say
Vo (F).
o3

Next. ¥y = 3Xp—3X,. Yp = 2Xo— X,; X, = Y, — 4Y;. X, = ¥, — 2¥, . Thus, any vector a¥; + bY, of
JV(F) is a vector (za+2b)X, — (2a+b)X, of ¥Z(F) and any vector cX, + dX, of VXF) is a vector
(c+dYY, ~ (4c+2d)Y; of VXF). Hence, the two spaces are identical.

6.(a) If X = [x;, %, 5,1 lies in the VZ(F) spanned by X, = [1,-1,1] and X, = [3,4,-2]", then

x, 1 3
% —~1 4| = -2x + 5%, + Txg = 0.
Xg 1 -2

2
(by If X =[%,,%,%45,%,] lies in the V,(F) spanned by X, = [1,1,2,3} and X, = [1,0,-2,1]", then
1

Xq

% 1 1

x. 11
2 . 0‘,-40, this requires [x, 1 O0f=-2x;+4x,- % =0 and

X3

|

X4

is of rank 2. Since

Xz 2 -2

Xo

L =t W N e
—

1
0| = % +2x, - x, = 0.
X4 1

k
These problems verify: Every ¥, (F) may be defined as the totality of solutions over F of a system of n-k
linearly independent homogeneous linear equations over F in n unknowns.

7. Prove: If two vector spaces %h(F) and Vnk(F) have VnS(F) as sum space and Vnt(F) as intersection
space, then h+k = s+¢t.

Suppose t=h; then V,Lh(F) is a subspace of V,Lk(F) and their sum space is Vyfe itself. Thus, s=k, t=h and
s+t = h+k. The reader will show that the same is true if t=%.

Suppose next that ¢<A, t<k and let X,, X, ..., Xy span IZZ&(F). Then by Theorem II there exist vectors
Yisq. Yegoo ..., ¥y so that Xy Xo ... Xp, Ypay..... ¥ span K(F) and vectors  Zy,,, Zyiyoo ... Zy so that
X, Xoo ... Xt Zt4q. ..., Zy, span WKF).

Now suppose there exist scalars a’s and b’s such that

t h k
(11.4) 3 oaiX + 3 aiY; o+, 3 b;Z; = 0 or
=1 i=t+1 i=t+1
t h k
_2 a; X; + p a;Y; = . S -b;Z;
i=1 i=t+1 i=t+1

The vector on the left belongs to Vnh(F), and from the right member, belongs also to I{.Lk(F); thus it belongs

to VrE(F)- But X;, X,. ..., Xt span W (F); hence, atyq = @ty = ... = ap = 0.
t k
Now from (11.4), 3 aiX; + % biZ; = 0
i=1 i=t+1
But the X’s and Z’s are linearly independent so that @, = g5 = ... = @t = bgyy = bty = ... = bp = 0; thus,

the X’s.Y’s, and Z’s are a linearly independent set and span V,,f(F), Then s = h+k —t as was to be proved.
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8.

10.

11.

. Determine a basis for the null space of 4 =

Consider 1V;f’(F) having X, =[1,2,3]" and X,=[1,1,1]" as basis and 2V:(F) having ¥, = [3,1,2]

and Y, =01,0,1] as basis. Since the matrix of the components is of rank 3, the sum

W N -
— e
(S )
- O =

space is J;(F). As a basis, we may take X,, X,, and ¥, .

From % + % = s + ¢. the intersection space is a Vsl(F). To find a basis, we equate linear combinations
2 2
of the vectors of the bases of ;V5(F) and ,V3(F) as

aX, + bX, = c¥% + dY,

a+b - 3¢

1
take d = 1 for convenience, and solve 2a +b — ¢ = 0 obtaining a =1/3, b=-4/3, ¢ = -2/3. Then
3a+b—-2c =1

aX; + bX, = [-1.~2/3.—1/3] is a basis of the intersection space. The vector [3,2,1]" is also a basis.

—_ - O

3
2
2
3

W = e W

1
2
0
1

. X4+ 2xg+ x4 = 0
Consider the system of equations AX = 0 which reduces to .
Xg+ Xg+ 2x4 = 0
A basis for the null space of 4 is the pair of linearly independent solutions[1,2.0,.—1] and [2,1,~1,0]"
of these equations.

Prove: r_ >

s 2=t

IE—TL.

I 0
Suppose first that 4 has the form [07;1 0]. Then the first ry Tows of AB are the first ry rows of B while

the remaining rows are zeros. By Problem 10, Chapter 5, the rank of 4B is g > It —n.

Suppose next that 4 is not of the above form. Then there exist nonsingular matrices P and ¢ such that
PAQ has that form while the rank of PAQB is exactly that of AB (why?).

I, 0
The reader may consider the special case when B = [TB ]
0 0

Let X=[1,2,1]" relative to the E-basis. Find its coordinates relative to a new basis Z,=[1,1,07,
Z,={1.0,11", and Z;=1{1,1,1]"

Solution (a). Write

1 1 1 1 a+b+c =1
() X = aZy+bZy+ cZs thatis, |2| = a|1| + b|o]| + ¢|1]|. Then a +¢=2and a=0, b=-1,
1 0 1 1 b+c =1

¢ = 2. Thus relative to the Z-basis, we have XZ = [0.-1.2]".
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Solution (by. Rewriting (i) as X = [Z4,Z,, Z51X; = ZXz, we have

1 0 -1]|1
X, = VA 1 -1 oll2l = lo-12]
-1 1 1|1

12. Let X; and X be the coordinates of a vector X with respect to the two bases Z, = [1,1,0],
Z,=[1,01), Zg=[1,1,1] and W, =[1.12), W, =1[2,2,1], W, =[1,2,2]". Determine the ma-
trix P such that X, = PX, .

11 1] 121 9 -3 32
Here 7 = [Z.Z5 7] =|1 0 1|, w=1]12 2| and W'lzé 2 0 -1}
011 21 2 -3 3 0
~1 4 1]
Then P:W‘lz:% 2 11| by@16).
0 -3 0]

SUPPLEMENTARY PROBLEMS

13. Let [y, %o x5 %4) be an arbitrary vector of ¥(R), where R denotes the field of real numbers. Which of the
following sets are subspaces of W (R)?
(a) All vectors with x, = x, = x5 = x4. (dy All vectors with x4 = 1.
(b) All vectors with x; = xo. x5 = 2x4. (e) All vectors with x;.x,. x5 x4 Integral.

(¢) All vectors with x4 = 0.
Ans. All except (d) and (e).

14. Show that [1.1.1.1] and [2‘3,3,2]/ are a basis of the VZ(F) of Problem 2.

15. Determine the dimension of the vector space spanned by each set of vectors. Select a basis for each.

(1.2.3.45] [1.1.0-1] %;i;fls%
(@ [5.4.3217, ® [1.234] . © [1‘2‘3‘4]’
[11.1.1.1] [2.3.3.3] [1.0-1,-2)

Ans. (a). (b), (¢), r=2

16. (a) Show that the vectors X; = [1,—1.1] and X, =[3.4,-2]" span the same space as ¥; = [9,5,—-1]" and
Y,=[-17.-11,3]"

(b) Show that the vectors X, = [1,-1,1]" and X, = [3,4.—2] do not span the same space as Y, = [—2,2,-2]
and ¥, = [4,3,1]".

k
17. Show that if the set Xq, Xo, ..., Xp is a basis for ¥ {F), then any other vector Y of the space can be repre-
sented uniquely as a linear combination of Xy, Xp, ..., X3 .
k
b; X;.
=1

(2

%
Hint. Assume Y = a;X; =
=1 i
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18.

19.

20.

21.

22.

23.

24.

25.

26.

21.

28.

29.

2 .
Consider the 4 x4 matrix whose columns are the vectors of a basis of the ¥, (R) of Problem 2 and a basis of
the IQQ(R) of Problem 3. Show that the rank of this matrix is 4; hence, ¥(R) is the sum space and Iﬁo(R). the
zero space, is the intersection space of the two given spaces.

Follow the proof given in Problem 8, Chapter 10, to prove Theorem HI.

Show that the space spanned by [1.0,0.0.0]", [0,0.0,0,1]" [1.0.1.0.0). [0.0.1,0.0); [1.0,0.1,1]" and the
space spanned by [1.0.0.0.1], [0.1.0.1.0]". [0.1.-2.1.0]". [1.0.-1.0.1]". [0.1.1.1.0]" are of dimensions
4 and 3. respectively. Show that [1.0,1,0.1]" and [1.0.2.0.1]" are a basis for the intersection space.

Find, relative to the basis Z;={1.1.21" Z,=[2.2.1], Zg=[1.2.2] the coordinates of the vectors
@ [1.1.0], ) [1.01]). () [1.1.1].
Ans. (@) [-1/3.2/3.0), (b [4/3.1/3.-11, (c) [1/3.1/3.0])

Find. relative to the basis Z; =[0,1,01, Z,=[1,1.1), Z;=[3.2.1] the coordinates of the vectors
(@) [2.-1.01, ) [1.-3.51". (o) [0.0.1]"
Ans. (@) [-2.-1.1]" &) [-6.7.-21" () [~1/2.3/2. -1/2]

Let XZ and XW be the coordinates of a vector X with respect to the given pair of bases. Determine the ma-
trix P such that XW = PXZ'

Zy=[1.00]1, Z,=[1.01Y. Z5=[1.117 Zy=10.101. Zo=[1.1.0]. Zg=[1.2.3)
W =10.1.0), W=[1.23], We=[1.-11] Wp=[11.01, Wm=[1.1.1), W=[1.2.17

52 4 01 -9
Ans. @) P = 3f~1 06| () P =]-10 2
32 2 10 1

n
Prove: If P; is a solution of 4X = Ej. (G=1.2.., n), then X thj is a solution of AX = H, where H =
A i=1
(B bo ... B 1
Hint. H = hiEi+hyEp+ o + hyE, .

The vector space defined by all linear combinations of the columns of a matrix 4 is called the column space
of A. The vector space defined by all linear combinations of the rows of A4 is called the row space of 4.
Show that the columns of 4B are in the column space of 4 and the rows of 4B are in the row space of B.

Show that AX = H, a system of m non-homogeneous equations in nunknowns, is consistent if and only if the
the vector H belongs to the column space of 4.

11 0 1111
Determine a basis for the null space of (@) |0 1 -1, N1 21 2].
10 1 3434

Ans. (@) [1.-1.-11, &) [1.1.-1.-17, [1.2.-1.-27
Prove: (a) NABZAQ' NABE% %) !\{4551\{4 +l\%
Hint: (a) Nyp = n —npi g <randr .

(b) Congider n — g . using the theorem of Problem 10.

Derive a procedure for Problem 16 using only column transformations on A = [ X1, Xo, Yy, Y,]. Then resolve
Problem 5.
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Linear Transformations

DEFINITION. Let X = [, %,...,%,]" and Y = [y, y5 ...,%,]" be two vectors of ¥, (F), their co-
ordinates being relative to the same basis of the space. Suppose that the coordinates of X .
Y are related by

Y1 = Q1% + QoXp + o0 + QX
(12.1) Yo = Op1Xq + GppXo + +++ + GopXp

Yo = Opa%y+ GuoXot oo+ Aupiy
or, briefly, Y = AX

where 4 = [aij] is over F. Then (12.1) is a transformation T which carries any vector X of
I, (F) into (usually) another vector Y of the same space, called its image.

If (12.1) carries X, into Y, and X, into Y, then
(@) it carries kX, into kY,, for every scalar k&, and

(by it carries aX, + bX, into aY, + bY,, for every pair of scalars a and b. For this reason, the
transformation is called linear.

11 2]
Example 1. Consider the linear transformation ¥ = AX = |1 2 5]|X in ordinary space Va(R).
1 33
11 2][2] |2
(a) The image of X =[2.05) is ¥ = |1 2 50| = |27 = [12.27.17]".
13 3_ 5 L17
11 2]]|x%s 2
(b) The vector X whose image is Y = [2,0.5]  is obtained by solving 1 2 5] |x) =10]
Xg 5

1122] {100 13/5
Since |1 2 5 o|~jo 1 o 11/5|. X ={13/5.11/5,-1/5]"
1335 001 -7/5

BASIC THEOREMS. If in (12.1), X=[1,0,...,0] = E, then Y = [ay,, ay, ..., apn ]” and, in general,
if X= E] then Y = [alj, an, PN llnj]’. Hence,

I. A linear transformation (12.1) is uniquely determined when the images (Y’s) of the
basis vectors are known, the respective columns of A being the coordinates of the images
of these vectors. See Problem 1.

94
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A linear transformation (12.1) is called non-singular if the images of distinct vectors X;
are distinct vectors Y;. Otherwise the transformation is called singular.

II. A linear transformation (12.1) is non-singular if and only if A4, the matrix of the
transformation, is non-singular. See Problem 2.

III. A non-singular linear transformation carries linearly independent (dependent) vec-
tors into linearly independent (dependent) vectors. See Problem 3.

From Theorem HI follows

kR
IV. Under a non-singular transformation (12.1) the image of a vector space ¥, (F) is a
vector space I{f(F), that is, the dimension of the vector space is preserved. In particular,
the transformation is a mapping of ¥(F) onto itself.

When 4 1is nbn—singular, the inverse of (12.1)
X =4

carries the set of vectors Y,, Y, ..., ¥, whose components are the columns of A into the basis
vectors of the space. It is also a linear transformation.

V. The elementary vectors E; of }(F) may be transformed into any set of n linearly
independent n-vectors by a non-singular linear transformation and conversely.

VL. If ¥ = AX carries a vector X into a vector Y, if Z = BY carries Y into Z, and if

W =CZ carries Z into W, then Z = BY = (BA)X carries X into Z and W = (CBAYX carries
Xinto W.

VII. When any two sets of n linearly independent n-vectors are given, there exists a
non-singular linear transformation which carries the vectors of one set into the vectors of
the other.

CHANGE OF BASIS. Relative to a Z-basis, let ¥; = AX; be a linear transformation of V.(F). Suppose
that the basis is changed and let X and ¥; be the coordinates of X; and ¥; respectively rela-
tive to the new basis. By Theorem VIII, Chapter 11, there exists a non-singular matrix P such
that Xy = PX; and ¥, = PY, or, setting P™ = , such that

X, = 00X, and Y, = 0y,

Then Yo = QY = Q7'4X; = 074QX, - BX,
where
(12.2) B = Q74Q

Two matrices 4 and B such that there exists a non-singular matrix Q for which B = 040
are called similar. We have proved

VHIL. If ¥, = AX, is a linear transformation of V.(F) relative to a given basis (Z-basis)
and Yy = BXy is the same linear transformation relative to another basis (W-basis), then
A and B are similar.

Note. since Q = P™, (12.2) might have been written as B = PAP™. A study of similar matrices
will be made later. There we shall agree to write B = R*4AR instead of B = SAS™? but
for no.compelling reason.
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113
Example 2. Let ¥ = AX = |1 2 1|X be a linear transformation relative to the E-basis and let W, =

1 3 2
(12,11 W, =[1.-12]. Wy=11.—-1.—1]" be a new basis. (a) Given the vector X = [3,0,2]",

find the coordinates of its image relative to the W-basis. (b) Find the linear transformation
Yy = BXy corresponding to Y = AX. (c¢) Use the result of (&) to find the image Yy of Xy =

[1.3.3).
11 1 1 3 3 0
Write W = [W. W, W] = |2 ~1 —1]; then - 9|1 -2 3]
1 2 -1 5 -1 -3

(a) Relative to the W-basis, the vector X = [3.0.2] has coordinates Xj = wix = [1.11].
The image of X is Y = AX = [9.5.7]" which, relative to the W-basis is Y o= vy -
[14/3.20/9.19/9]".

36 21 —15
&) Yy = WY = WTAX = WTAW) Xy = BXy = ${21 10 —11|Xy
-3 23 -1
36 21 -15(|1 6
(@) ¥y = +f21 10 —11fls] = |2 - [6.27"
-3 23 -1l|3] |7

See Problem 5.

SOLVED PROBLEMS

1. (@) Set up the linear transformation ¥ = AX which carries E, into ¥, =[1,2,3]", E,into [3,1,2]",

and Eginto ¥;=102,1,31"
(b) Find the images of X, =[1,1,1), X, =[3,—1,4], and Xo=[4,0,5]"
(¢) Show that X, and X, are linearly independent as also are their images.
(dy Show that X,, X,, and X, are linearly dependent as also are their images.

1 3 2
(a) By Theoreml, A4 =[Y,, Y, Ys]; the equation of the linear transformation is Y = AX = ]2 1 1]X.
323
13 2111
(b) The image of X;=[1.1.11 s ¥, = |2 1 1||1] = [6.4.8]". The image of X, is Y, =[8.9.19]" and the
3 2 3 1
image of Xgis Y5 =[14.13.27]"
1 3 6 8
(¢) The rank of [X;, X,]= |1 1| is 2 as also is that of [¥;,¥,] = |4 9| Thus, X; and X, are linearly
1 4 8 19

independent as also are their images.

(d) We may compare the ranks of [ Xy, Xo. X5] and [ ;. Y5, Ya1; however, X5 = X;+X, and Y5 = Y;+1/, so that
both sets are linearly dependent.
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2. Prove: A linear transformation (12.1) is non-singular if and only if 4 is non-singular.

Suppose 4 is non-singular and the transforms of X, # X, are Y = AX, = AX,. Then A(X;-Xo) = 0 and
the system of homogeneous linear equations AX = 0 has the non-trivial solution X = X, - X,. This is pos-
sible if and only if |Al = 0, a contradiction of the hypothesis that 4 is non-singular.

. Prove: A non-singular linear transformation carries linearly independent vectors into linearly in-
dependent vectors.

Assume the contrary, that is, suppose that the images Y, =AX;, G =1.2...., p) of the linearly independ-
ent vectors X;.X,,..., Xﬁ are linearly dependent. Then there exist scalars s;.s,,..., sp . not all zero, such that

b

2 SiY'i, = 81Y1+SQYQ+'--+S¢7Y¢ = 0
1=1

P

2 s;(AX) = A(s1 Xy 4 spXo + o+ 5pXp) = 0

or

Since 4 is non-singular, s;X; + s,Xp + =+ + Sp Xﬁ = 0. But this is contrary to the hypothesis that the X; are
linearly independent. Hence, the Y; are lineatly independent.

. A certain linear transformation Y = AX carries X;=11,0,11 into [2,3,-11, X,=[1,—1,1] into
[8,0,—27, and Xg=[1,2,—1]" into [—2,7,—~1]". Find the images of E,, E,, E; and write the equa-
tion of the transformation.

a+b+ ¢ =1

Let aX;+bXo+cXg= Ey; then { —b+2c =0 and a=—%, b=1, c<%. Thus, Ei= 35X+ Xo+5X,

a+b—- c=9

and its image is ¥, = -3{2.3.-11+[3,0,-2) +3[-2.7.-1])" = [1.2.—27.

Similarly, the image of £, is
Y,=[-1.3.1] and the image of Egis Y5= [1.1.1]".

The equation of the transformation is

1 -11
Y = [Y.Y,.Y]x = 2 3 1{X
-2 11
112
5.1f Yp =AXy ={2 2 1}X; is a linear transformation relative to the Z-basis of Problem 12, Chap-
312

ter 11, find the same transformation Y, = BXy relative to the W-basis of that problem,.

-1 41
PXZ = % 2 11 Xz.
0 -3 0

From Problem 12, Chapter 11, Xy = Then

-1 1 -1
OO—IXW =
21 3

0%,

-2 14 -6
7T 14 9 XW
0 -9 3

- . ot -1 1
and Y, = PY, = Qlax, 074Qx, = 1
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10.

11.

12.

13.

14.

15.

16.

LINEAR TRANSFORMATIONS [CHAP, 12

SUPPLEMENTARY PROBLEMS

. In Problem 1 show: (a) the transformation is non-singular, (b) X = Ale carries the column vectors of 4 into

the elementary vectors.

. Using the transformation of Problem1, find (@) the image of X = [1.1.2]", (b) the vector X whose image is

[-2.-5.-5]".  4ns. (o) [8.5.11), &) [-3.-1.2]

. Study the effect of the transformation Y =IX, also Y = kIX.

. Set up the linear transformation which carries E; into [1.2,3]", E, into [3.1.2]", and E5into [2.—1,—11".

Show that the transformation is singular and carries the linearly independent vectors [1,1,1] and [2.0.2]"
into the same image vector.

Suppose (12.1) is non-singular and show that if X,, X, ..., X,, are linearly dependent so also are their im-
ages Y1.Y, ... Y.

Use Theorem HI to show that under a non-singular transformation the dimension of a vector space is un-

changed. Hint. Consider the images of a basis of V,; (F).
110
Given the linear transformation Y = 2 3 1|X. show (a) it is singular, () the images of the linearly in-
-235

dependent vectors Xi=[1.1.1]" X,=[2,1.2]" and Xg=[1.2,3]" are linearly dependent, (c) the image
of W3(R) is a I,/BQ(R).
113
Given the linear transformation ¥ = |1 2 4]|X. show (e) it is singular, (b) the image of every vector of the
\ 113
%(R) spanned by [1.1.1] and [3.2.01 lies in the Vi(R) spanned by [5.7.5]".

Prove Theorem VII. }
Hint. Let X; and ¥, (i=1.,2,...,n) be the given sets of vectors. Let Z = AX carry the set X; into £; and
Y = BZ carry the E; into ¥;.

Prove: Similar matrices have equal determinants.

123

Let Y =4X=|3 2 1]X be a linear transformation relative to the E-basis and let a new basis, say Z, =
111

[1.1.0), Zo=11.0.11, Zz=[1.1.1]" be chosen. Let X =[1.2.3] relative to the E-basis. Show that

(@) Y =[14.10.6]  is the image of X under the transformation,

(b) X, when referred to the new basis, has coordinates Xz = [-2.-1.4]" and ¥ has coordinates ¥; = [8.4.2]".

1 0-1
(¢) Xz =PX and Y, = PY, whete P =| 1 -1 o= (22,2,
-1 1 1
(d) Y; = QAQX,, where Q =P "
110
17. Given the linear transformation Y, = 0 1 1)Xy. relative to the W-basis: W =[0.~1.2]] W,= [4,1.0]’

101
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18.

19.

20.

W, =[—-2.0,—4]". Findtherepresentationrelative tothe Z-basis: Z, = [1.-1.1), Z,=[1.0.-1]", Z5=1[1.2.1].

-1 0 3
Ans. YZ = 2 2 -5 XZ
-1 0 2

If. in the linear transformation Y = 4X. 4 is singular, then the null space of 4 is the vector space each of
whose vectors transforms into the zero vector. Determine the null space of the transformation of

1 23
(a) Problem12, (b) Problem13, (c¢) Y =}2 4 6}X.

3609

Ans. (a) I{al(R) spanned by [1.-1.1]"
Q) Vsl(R) spanned by [2.,1,—-1]"
(c) VSQ(R) spanned by [2,-1.0]" and [3.0-1)

h
If Y =AX carries every vector of a vector space ¥, into a vector of that same space, V,}LL is called an in-
variant space of the transformation. Show that in the real space V4(R) under the linear transformation

1 0-1
(@Y =1 2 1|X. the %' spanned by [1.~1.0]", the ¥ spanned by [2.—~1.—2]". and the ¥ spanned by
22 3
[1.—1.—2]" are invariant vector spaces.
(2 2 1
(Y = |1 3 1]X, the V31 spanned by [1.1.1]" and the V32 spanned by [1.0,—1]" and [2,—1.0]" are invariant
L.l 2 2
spaces. (Note that every vector of the ng is carried into itself.)
[ 01 00
00 10 1 /. R .
()Y = 00 01 X, the ¥, spanned by [1,1,1,1]" is an invariant vector space.
| -1 4 -6 4
Consider the linear transformation ¥ = PX: y; = X5 (¢ =1,2,....n) 1in which ji,ja, ..., j, is a permuta-
tionof 1,2, ...,n. v

(@) Describe the permutation matrix 7.

(b) Prove: There are n! permutation matrices of order n.

(¢) Prove: If Py and P, are permutation matrices so also are P3=P,P, and P, =P,P,.

(d) Prove: If P is a permutation matrix so also are P and PP =1.

(e) Show that each permutation matrix P can be expressed as a product of a number of the elementary col-
umn matrices Kp5 Kos, ..., Kn—l,-n'

(f) Write P = [Eil' Ej, ... Ein] where iy, i, ;n is a permutation of 1,2,....n and E,;]. are the ele-
mentary n-vectors. Find a rule (other than P~ = P’) for writing P~ . For example, when n = 4 and
P = [Eq Ey, Ey E5), then P70 = [Ey Ey By, Es]; when P = [E4 Eo, By, Eg). then P = [Eq Eo Eq Eq).



Chapter 13

Vectors Over the Real Field

INNER PRODUCT. In this chapter all vectors are real and [ (R) is the space of all real n-vectors.
If X=[x,%,..., %] and ¥ = [y, y, ..., % ] are two vectors of ¥ (R), their inner product is
defined to be the scalar

(13.1) XY = xy + %y + 0 + %y

Example 1. For the vectors X, = [1.1.1]", X, = [2.1.2]", X5=[1.-2,1]"

@ X1°Xo = 1'2 + 1°'1 + 1:2 = 5

(b) X1+X3 = 11 + 1(=2) + 11 = 0O

(¢) X43+X, = 11 + 11 + 1.1 = 3

d) X.-2X, = 14 + 1:2 + 14 = 10 = 2(X1-Xo)

Note. The inner product is frequently defined as
(13.19) XYy = XY = YX

The use of X’Y and Y’X is helpful; however, X’Y and Y’ X are 1x1 matrices while
X.Y is the element of the matrix. With this understanding, (13.1) will be used
here. Some authors write X|Y for X.Y. In vector analysis, the inner product is call-
ed the dot product.

The following rules for inner products are immediate
(o) Xy X, = X0 Xy, Xi kX, = KXy~ X))

(13.2) (by Xy -(Xo+ Xy = (Xo+ Xg) - Xy = Xo-Xo + X+ Xg
() (Xp+Xp)+ (Xa+X) = Xo-Xg + Xoo Xy + Xoo X5 + Xp- X,

ORTHOGONAL VECTORS. Two vectors X and Y of V(R) are said to be orthogonal if their inner
product is 0. The vectors X; and X; of Example 1 are orthogonal.

THE LENGTH OF A VECTOR X of V(R), denoted by || X||, is defined as the square root of the in-
ner product of X and X ; thus,

(13.3) HXH = VXX = \/xf+x§+---+x3

Example 2. From Example 1(¢), ||X1H = \/E
See Problems 1-2.

100
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Using (13.1) and (13.3), it may be shown that
(13.4) x.v = stllxev(lP = llxll? = lyl7y

A vector X whose length is HX|| =1 is called a unit vector. The elementary vectors E;
are examples of unit vectors.

THE SCHWARZ INEQUALITY. If X and Y are vectors of F(R), then
(13.5) x-vl < Jlx{l-fivll

that is, the numerical value of the inner product of two real vectors is at most the product of
their lengths.
See Problem 3.

THE TRIANGLE INEQUALITY. If X and Y are vectors of I(R), then

(13.6) x«xll < llxlf+ 1yl

ORTHOGONAL VECTORS AND SPACES. If X, X,,..., X, are m< n mutually orthogonal non-zero
n-vectors and if ¢ Xy + e Xo+ -+ ¢y X, =0, then for i =1,2,...,m, (e, Xy +cXp+en+ e Xp) - X =
0. Since this requires ¢; =0 for i =1,2,...,m, we have

I. Any set of m< n mutually orthogonal non-zero n-vectors is a linearly independent
set and spans a vector space I{Z"(R).

A vector Y is said to be orthogonal to a vector space Vnm(R) if it is orthogonal to every
vector of the space.

II. If a vector Y is orthogonal to each of the n-vectors X1, Xor ..., X, it is orthogonal
to the space spanned by them.

See Problem 4.

Im. If Vnh(R) is a subspace of KLk(R), Lk>Fh, there exists at least one vector X of I{f’(R)
which is orthogonal to KLh(R).
See Problem 5.

Since mutually orthogonal vectors are linearly independent, a vector space V,Z”(R), m>Q,
can contain no more than m mutually orthogonal vectors. Suppose we have found r<m mutually
orthogonal vectors of a ¥"(R). They span a V(R), a subspace of VM(R), and by Theorem II,
there exists at least one vector of Vnm(R) which is orthogonal to the ¥J(R). We now have r+1
mutually orthogonal vectors of I{{”(R) and by repeating the argument, we show

IV. Every vector space Vnm(R), m >0, contains m but not more than m mutually orthog-
onal vectors.

Two vector spaces are said to be orthogonal if every vector of one is orthogonal to every
vector of the other space. For example, the space spanned by X, =[1,0,0,1]" and X, =
[0.1,1,0]" is orthogonal to the space spanned by X; =[1,0,0,—-1] and X, = [0,1,—-1,0]"
since (aX,+bX,) - (cXz+dXy) = 0 forall a b, ¢, d.
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. k . .
V. The set of all vectors orthogonal to every vector of a given I/ (R) is a unique vec-

t n-k )
or space ¥ %(R) See Problem 6.

We may associate with any vector X # 0 a unique unit vector U obtained by dividing the
components of X by | X||. This operation is called normalization. Thus, to normalize the vector
X =1[2,4,4), divide each component by |[X| = /4 + 16 + 16 = 6 and obtain the unit vector
[1/3,2/3,2/37.

A basis of I{{"(R) which consists of mutually orthogonal vectors is called an orthogonal ba-

sis of the space; if the mutually orthogonal vectors are also unit vectors, the basis is called a
normal orthogonal or orthonormal basis. The elementary vectors are an orthonormal basis of VAR).
See Problem 7.

THE GRAM-SCHMIDT ORTHOGONALIZATION PROCESS. Suppose X, X,, ..., X, are a basis of
V(Ry. Define

Y1 = X1
Y,-X
, = X, - Yi-Yf 1
Y,-X Y, X
Y, = X, — 222y, — 22y,
3 3 YQ-YQ 2 Y1'Y1 1
Y. Y, X
Ym=Xm_ 7anWLYm—i_ - 1’!‘,Y1
Ym—i Vi1 Y1 A

1)

Then the unit vectors G; = , (£ =1,2,...,m) are mutually orthogonal and are an orthonormal

basis of ¥ (R).

Example 3. Construct, using the Gram-Schmidt process, an orthogonal basis of V3(R), given a basis
X, =[1117, X, =[1.-217, Xz=[1.2.3]"

iy ¥, = X, = [1.11]

(i) Y, = Xo — %:—YXin = [1.-2171 - BQY1 = [1.-21Y
(ifi) Y5 = X5 — ;;Q;Z’YQ - %:;(—131/1 = [1.23] - gYQ -~ 2[1.1.1]’ = [-1.017
The vectors G, = ”2” = [1/V/3, 1/V/3. 127,
G, = ll%:ll = [1//6. ~2/V6. 1/7/6] and Gy = ﬁiﬂ = [-1/2. 0. 1/2]

are an orthonormal basis of J;3(R). Each vector G; is a unit vector and each product G; - Gj =
0. Note that Y, = X, here because X; and X, are orthogonal vectors.

See Problems 8-9.
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Let X;, X, ..., X, be a basis of a IJ(R) and suppose that X, X,, ..., X5, (1< s<m), are
mutually orthogonal. Then, by the Gram-Schmidf process, we may obtain an orthogonal basis
Y,, Y. ..., ¥, of the space of which, it is easy to show, ¥; = X;, (i = 1,2,...,s). Thus,

VL. If X,, X,, ..., X5, (1< s<m), are mutually orthogonal unit vectors of a V,Lm(R), there
exist unit vectors Xs,,, Xg,, ..., Xy in the space such that the set X, X,,...,X, is an
orthonormal basis.

THE GRAMIAN. Let X, X, ..., Xﬁ be a set of real n-vectors and define the Gramian matrix

XXy XX, o XX XX, XX, .. X{X,
Xo- Xy Xoo X, o XpeXp X; X, XoXo ... XoXp
(13.8) L N e
Xp- X, Xp-X, . Xp-Xp XpX, XpX, ... XpX,p

Clearly, the vectors are mutually orthogonal if and only if G is diagonal.
In Problem 14, Chapter 17, we shall prove

VII. For a set of real n-vectors X,, X,, ..., Xp, |G |>0. The equality holds if and only
if the vectors are linearly dependent.

ORTHOGONAL MATRICES. A square matrix 4 is called orthogonal if

(13.9) AL = 44 = 1
that is, if
(13.9) 4 = 4

From (13.9) it is clear that the column vectors (row vectors) of an orthogonal matrix 4 are
mutually orthogonal unit vectors.

WWAVERNNS VAVE RS VAVE:)

Example 4. By Example3, 4 = |1/A/3 -2/v/6 0 is orthogonal.
1/V3 1A/6  1/J/2
There follow readily

VIII. If the real n-square matrix A is orthogonal, its column vectors (row vectors) are
an orthonormal basis of I (R), and conversely.

IX. The inverse and the transpose of an orthogonal matrix are orthogonal.
X. The product of two or more orthogonal matrices is orthogonal.

XI. The determinant of an orthogonal matrix is +1.

ORTHOGONAL TRANSFORMATIONS. Let

(13.10) Y AX
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be a linear transformation in %(R) and let the images of the n-vectors X, and X, be denoted by
Y, and Y, respectively. From (13.4) we have

X, X, X+ Xl — 1X° = 1X,0%

and 0 R )
- = B+ Y%1° - 47 - %17}

Comparing right and left members, we see that if (13.10) preserves lengths it preserves inner
products, and conversely. Thus,

XII. A linear transformation preserves lengths if and only if it preserves inner products.

A linear transformation Y =AX is called orthogonal if its matrix A4 is orthogonal. In Prob-
lem 10, we prove

XIII. A linear transformation preserves lengths if and only if its matrix is orthogonal.

1/V3 146 —1n/2

Example 5. The linear transformation Y = AX = [1/4/3 -2/\/6 0 |X is orthogonal. The image of
1V3 1n6 1A2
X = [a,b,C]’iS

Y - a : b c a 2b a + b + )
V3 V6 V2 V3 e 3 6 2
and both vectors are of length 1/a2+ b2+ c2 .

XIV. If (13.10) is a transformation of coordinates from the E-basis to another, the Z-
basis, then the Z-basis is orthonormal if and only if 4 is orthogonal.

SOLVED PROBLEMS

1. Given the vectors X; =[1,2,3]" and X, =[2,—-3,47, find:
(@) their inner product, (b) the length of each.

2
(@ Xp-X, = X{X, = [1.23]}-3| = 12) + 2(-3) + 3¢) = 8
4
1
G 1X® = XX = XX, = [123]]2] = 14 and lx, = via
3

IX° = 22) + (=3)(=3) + 44) = 20 and |X,| = vag
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2. (a) Show that X ={1/3,-2/3,—2/3]" and Y =[2/3,-1/3,2/3]" are orthogonal.
(by Find a vector Z orthogonal to both X and Y.

2/3
@) XY = XY = [1/3.-2/3.-2/3]1|=1/3| = 0 and the vectors are orthogonal.
2/3
1/3 2/3 0
(b) write [X.Y.0] = |-2/3 —1/3 0| and compute the cofactors —2/3.-2/3,1/3 of the elements of the
—2/3 2/3 0

column of zeros. Then by (3.11) Z = [-2/3.-2/3.1/3]" is orthogonal to both X and Y.

3. Prove the Schwarz Inequality: If X and Y are vectors of ¥,(R), then |X.Y| < ||IX|-|Y]|.

Clearly. the theorem is true if X or Y is the zero vector. Assume then that X and Y are non-zero vectors.
If a is any real number,

lax+y|? - (@aX+Y)-(@X+Y)

= [‘1"1*'71' a%y+Yp. ..., O%p+ ¥y ] [ax1+}’1- a%o+Yo, .., Gxp+yn ]
2 2 2 22 2 2 2 2
(@ % +20x1% +97) + (@7%+ %%+ %) + 0 + (@4 + 2ax, 9 + ¥ )

?IX[” + 20xy + |YI° > o

Now a quadratic polynomial in e is greater than or equal to zero for all real values of a if and only if its
discriminant is less than or equal to zero. Thus,

(XY — axIP-IlY)P < o

and Xy < fxll- )

4. Prove: If a vector Y is orthogonal to each of the n-vectors X , Xo, ..., X, it is orthogonal to the
space spanned by these vectors.

Any vector of the space spanned by the X’s can be written as a1 X +ay,Xo+ - +ag Xy . Then
(a1 X1 + apXp+ o+ agXp) Y = @y XY + apXorY 4+ e 4 anXp-Y = 0
since X;-Y =0, (i =1,2,....m). Thus, Y is orthogonal to every vector of the space and by definition is

orthogonal to the space. In particular. if Y is orthogonal to every vector of a basis of a vector space, it is
orthogonal to that space.

) k
5. Prove: If a ¥ (R) is a subspace of a V,(R), k>h, then there exists at least one vector X of I{f(R)
which is orthogonal to the V,(R).

Let X,,X,, .... X} be a basis of the V,zl(R). let X;., be a vector in the Klk(R) but not in the I;Zh(R). and
consider the vector

(i) X = a Xy + apXy + o0+ apXp + apeq Xpeq

The condition that X be orthogonal to each of X1.Xo, .... X, consists of & homogeneous linear equations
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ay Xy - Xy + apXo - Xy + 0 4 apXpe X, + ape 1 Xpe1+Xy = 0
ag Xy Xo + aoXor Xo + - + apXpe X, + apeg XpeeXo = 0
a Xy Xp 4 aXo Xy + e b Xy Xy 4 apaXpaa Xy = 0

in the A+1 unknowns a,.a.. -+ 8p+y. By Theorem IV, Chapter 10, a non-trivial solution exists. When these
values are substituted in (i), we have a non-zero (why?) vector X orthogonal to the basis vectors of the VJ(R)
and hence to that space.

6. Prove: The set of all vectors orthogonal to every vector of a given Vnk(‘R) is a unique vector space
VIR RY.

Let X;. X, ....X; be a basis of the Vnk(R). The n-vectors X orthogonal to each of the X; satisfy the
system of homogeneous equations

(i) X -X=0X3-X=0.....Xp-X=0

Since the X; are linearly independent, the coefficient matrix of the system (i) is of rank k£ ; hence, there are
n-k linearly independent solutions (vectors) which span a Vnn_k(R). (See Theorem VI, Chapter 10.)

Uniqueness follows from the fact that the intersection space of the Vnk(R) and the V,?—k(R) is the zero-
space so that the sum space is ¥, (R).

7. Find an orthonormal basis of VyR), given X = [1/1/8, 2//6,1//67.

Note that X is a unit vector. Choose Y =[1/1/2.0.-1/y/2]" another unit vector such that X -¥ = 0.
Then. as in Problem 2(a), obtain Z = [1/v/3, -1/V3.1/v/3]1 to complete the set.

8. Derive the Gram-Schmidt equations (13.7).

Let X;.X,, ..., X, be a given basis of Vnm(R) and denote by Y. Y, ..., ¥ the set of mutually orthogonal
vectors to be found.

(a) Take Y, = X, .

(b) Take Y, = X, + aY,. Since ¥; and ¥, are to be mutually orthogonal,

i-Yo = Y- X + Yyea¥y = VX, + a¥rY, = 0
¢ Y,- X
and a = - %2 gy, ooy, Yakey
Y, Y, Y, Y,

(¢) Take Y3 = X5+ a¥, + bY;. Since Y;.Y, Y, are to be mutually orthogonal,

Y, ¥y = Yi-Xs + a¥y Y, + bY, oY = Y,-Xg + BY,-Y, - 0

and
YorYa = YooXg + aYp Yy + bY, Y, = Y, Xy + a¥,-¥, = 0
. . . X
Then o - - 2%y MK gy oy BNy Kk
YQ'YQ Yl'Yl YQ'Y? Y1'Y1

(d) Continue the process until Y, is obtained.
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9. Construct an orthonormal basis of Vg, given the basis X, ={2,1,3], X, =[1,2,3], and X; = [1,1,1]"

10.

11.

12.

13.

14.

15.

Take Y; =X, ={2.1.3]". Then

Y, = X, — ?';{21/1 = [1.23) - 3[2.1.3]’ - [-6/7.15/14,3/14]
1° 41

Y,- X Y,-X
Yo = X, — 22738y, _ 173y
3 3 Y, Y, 2 Y, Y, 1

. 20 6 15 3] 3 . 11 1]
111 - 2|6 15 31 _3[513) = {1 L _1
(1.1.1] 9 [ 714 14] 7[ ] [3 3 3]

Normalizing the Y’s, we have [2/y/14.1/V14.3/V14]), [-4/vVa2.5/\/42.1/vV/42), [1/V/3.1/vV3, -1/V/3]

as the required orthonormal basis.

1}

Prove: A linear transformation preserves lengths if and only if its matrix is orthogonal.
Let Y;.Y, be the respective images of X;, X, under the linear transformation ¥ = 4AX.
Suppose 4 is orthogonal so that A4 =I. Then

) Y)Y, = VY, = (XiAV(AXy) = X1X, = XX,

and, by Theorem XII lengths are preserved.

Conversely. suppose lengths (also inner products) are preserved. Then
,-Y = X[(A4)X, = XX, A4 =1

and 4 is orthogonal.

SUPPLEMENTARY PROBLEMS

Given the vectors X, = [1.2,1], X,=[2.1.21, X,=[2.1,—-4]", find:
(a) the inner product of each pair,

(b) the length of each vector,

(c) a vector orthogonal to the vectors X, X,; X;, X5.

Ans. (a) 6.0. -3 (b)Y V6.3.V21 (c) [1.0.-1]. [3.-217
Using arbitrary vectors of V;(R). verify (13.2).
Prove (13.4).

Let X = [1.2.3.4]" and ¥ = [2,1,—1,1]" be a basis of 2 ;AR) and Z = [4.2.3,1]" lie in a V(R) containing X
and Y.

(a) Show that Z is not in the J2(R),

(by Write W = aX + bY + ¢Z and find a vector W of the I{‘S(R) orthogonal to both X and Y.

(a) Prove: A vector of |, (R) is orthogonal to itself if and only if it is the zero vector.

(b) Prove: If X, X, X, are a set of linearly dependent non-zero n-vectors and if X« X, = X,+Xg =0, then
X, and X are linearly dependent.
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16. Prove: A vector X is orthogonal to every vector of a Iﬁm(R) if and only if it is orthogonal to every vector of
a basis of the space.

17. Prove: If two spaces Vnh(R) and I{lk(R) are orthogonal, their intersection space is I{lO(R).

18. Prove: The Triangle Inequality.
Hint. Show that | X + Y |2 < ([|X]| + [[¥])?. using the Schwarz Inequality.

19. Prove: | X + Y| = )|X| + Y|l if and only if X and Y are linearly dependent.

20. Normalize the vectors of Problem 11.

Ans. [1/4/6. 2/v6. 1/v/61, [2/3, 173, 2/3), [2//21, 14/21, —4//21 )
21. Bhow that the vectors X.Y.Z of Problem 2 are an orthonormal basis of V4(R).

22. (a) Show that if X;. X, ..., X;; are linearly independent so also are the unit vectors obtained by normalizing
them.

(b) Show that if the vectors of (a) are mutually orthogonal non-zero vectors, so also are the unit vectors
obtained by normalizing them.

23. Prove: (a) If 4 is orthogonal and |A4| = 1, each element of 4 is equal to its cofactor in |A].
(b) If 4 is orthogonal and | 4| = —1, each element of 4 is equal to the negative ofits cofactorin |4].

24. Prove Theorems VIH, IX, X, XI.
25. Prove: If A and B commute and C is orthogonal, then CAC and C BC commute.

26. Prove that 44" (or A4), where A is n-square, is a diagonal matrix if and only if the rows (or columns) of 4
are orthogonal.

27. Prove: If X and Y are n-vectors, then XY '+YX’ is symmetric.

28. Prove: If X and Y are n-vectors and 4 is n-square, then X-(4Y) = (4"X)-Y.
7
29. Prove: If Xy, X,, .... X, be an orthonormal basis and if X = X c;X;, then (a) X-X; = ¢;. (i=1.2....,n)%
(B XX = v elv s el =1

30. Find an orthonormal basis of Vy(R), given (a) X, = [3/7/17. —2/\/17. 2/VIT); (b) [3.0.2]
Ans. (@) X1, [0, 1/4/2. 1/V2]. [-4//34, -3/\/34. 3/\/34]
(6y [3/v13. 0. 2/V/131, [2/y/13. 0, -3/4/13), [0.1.0]

31. Construct orthonormal bases of ¥3(R) by the Gram-Schmidt process, using the given vectors in order:
(@ [1.-1.0]", [2.-1.-2], [1.-1.-2]
#y [1.0171, (1317, [3.2.17
(¢y [2.-1,01, [4.-1,0], [4.0-1]
Ans. (ay [3v2, -3v2, 01, [V2/6. Vas6. —2v/2/3], [-2/3, —2/3, -1/3]"
& [3vz.0.3v2], [o1.0], [3V2 0, -3v2)
(e) [2v5/5, —\/5/5,0Y, [V/5/5, 2v5/5, 01, [0.0.-1]

32. Obtain an orthonormal basis of Vy(R), given X, =[1.1.—1] and X, =[2.1.0]"
Hint. Take Y; = X,, obtain ¥, by the Gram-Schmidt process, and Y5 by the method of Problem 2(b).

Ans. [V3/3.v3/3. =V3/31, [3v2. 0,3v2]1, [V6/6. —\V6/3. —\/6/6]
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33.

34.

35.

36.

37.

38.

39.

41.

Obtain an orthonormal basis of W(R), given X, =[7,~1.-1]"
Show in two ways that the vectors [1.2,3.4]", [1.—-1.~2.—3]", and [5.4.5.6]  are linearly dependent.
Prove: If A is skew-symmetric,and /+4 is non-singular, then B = -A){ +A)"! is orthogonal.

Use Problem 35 to obtain the orthogonal matrix B, given

0 12
05
(a)A:[ ] b 4 =]-1 0 3
-5 0
-2 -3 0
5-14 2
A 1l 5y Li-10 10
ns. (a)ﬁ 5_12. ()T‘s' 5
10 2 -11

Prove: If A is an orthogonal matrix and if B = AP, where P is non-singular, then PB? is orthogonal.
In a transformation of coordinates from the E-basis to an orthonormal Z-basis with matrix P, ¥ = AX Dbe-
comes Y, = P’lAPX1 or Y, = BX, (see Chapter12). Show that if 4 is orthogonal so also is B, and con-

versely, to prove Theorem XIV.

Prove: If 4 is orthogonal and 7/+A4 is non-singular then B = (I—A)(I+A)"1 is skew-symmetric.

. Let X =[xy, %, %5]" and Y = [y, 0. y5]" be two vectors of V5(R) and define the vector product, X xY, of

X2 ¥2 X3 Y3 X1 y1

XandY as Z = XxY ={z. 20, 25]" where 2z, = , 29 = , zg = After identifying

X3 ¥3 x1 y1
the z; as cofactors of the elements of the third column of [X;, ¥4, 0], establish:

X2 Y2

(a) The vector product of two linearly dependent vectors is the zero vector.

(b) The vector product of two linearly independent vectors is orthogonal to each of the two vectors.
() XxY = (Y xX)

(d) (EX)xY = k(XxY) = Xx(kY), k a scalar.

If W.X,Y,Z are four vectors of V5(R), establish:
(@) X x(Y+Z) = XxY + XxZ

(b)y X (¥YxZ) = Y (ZxX) = Z+(XxY) = |XYZ|
o |wy wez
(¢) (WxXy*(¥YxZ) = IX‘Y X‘Zl

(@) (XxY)" (XxY) = IX'X X'YI

Y-X Y'Y



Chapter 14

Vectors Over the Complex Field

COMPLEX NUMBERS. If x and y are real numbers and ¢ is defined by the relation i=—1, z=x+iy

is called a complex number. The real number x is called the real part and the real number y is
called the imaginary part of x+1iy.

Two complex numbers are egual if and only if the real and imaginary parts of one are equal
respectively to the real and imaginary parts of the other.

A complex number x+iy =0 if and only if x =y =0.

The conjugate of the complex number z =x+iy is given by z = x+iy = x—iy. The sum
(product) of any complex number and its conjugate is a real number.

The absolute value |z| of the complex number z = x+iy is given by |z] = V2.2 = V2Z+57.
It follows immediately that for any complex number z = x+1iy,

(14.1) |z} > lx] and |z} > Iyl

VECTORS. Let X be an n-vector over the complex field C. The totality of such vectors constitutes
the vector space ¥,(C). Since W (R) is a subfield, it is to be expected that each theorem con-
cerning vectors of ¥(C) will reduce to a theorem of Chapter 13 when only real vectors are con-
sidered.

If X=1[x,%,.... %) and ¥ = [%, yo,..., %]~ are two vectors of I, (C), their inner product
is defined as

(14.2) XYy = XY - B ) ot Xk + ot 4 A

The following laws governing inner products are readily verified:

(@) XY =YX | (fy XY+ Y.X = 2R(X-Yy
&y (eX)-Y = &X-Y) where R(X-Y) is the real part of X.Y.
(18.3) (o) XYy = ¢(X-Y) &) XY—-Y.X = 2C(X-Y)
(dy X(Y+Zy = X-Y+X.7 where C(X-Y)is the imaginary part of X-Y.
ey (Y+2).X = Y. X+ Z.X See Problem 1.
The length of a vector X is given by [|X]| = VXX = Vw® + %% + == + %%,

Two vectors X and Y are orthogonal if X.-Y = Y.X = 0.
For vectors of KL(C), the Triangle Inequality

(14.4) [X+Yl < X+ Y]
and the Schwarz Inequality (see Problem 2)
(14.5) |X-Y{ < (x{- 1

hold. Moreover, we have (see Theorems I-IV of Chapter 13)

110
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I. Any set of m mutually orthogonal non-zero n-vectors over C is linearly independent
m
and, hence, spans a vector space ¥, (C).

II. If a vector Y is orthogonal to each of the n-vectors X,, X,, ..., X,, then it is or-
thogonal to the space spanned by these vectors.

Im. 1if Vf(C) is a subspace of Vnk((]), k>h, then there exists at least one vector X in
Vnk( Cy which is orthogonal to th(C).

IV. Every vector space I{Lm(C), m>0, contains m but not more than m mutually orthog-
onal vectors.

A basis of Klm(C) which consists of mutually orthogonal vectors is called an orthogonal
basis. If the mutually orthogonal vectors are also unit vectors, the basis is called a normal
or orthonomnal basis.

THE GRAM-SCHMIDT PROCESS. Let X, X, ..., X, be a basis for Zlm(C). Define

Y,-X
, = X, - X2y,
2 2 Yl'Yl 1
Y,-X Y,-X
(14.6) Los X - 5% - TR AR
2°f2 1741
Y, X Y,
Ym - Xm _ m-1" m Yle _ _ 1 X’”L Y1
Ym—l'Ym—l Y1 A
The unit vectors G; = ”—}II/’T' (i =1,2,...,m) are an orthonormal basis for V:(C).

Vo If X, X, ..., Xg, (1< s<m), are mutually orthogonal unit vectors of Zlm(C), there
exist unit vectors (obtained by the Gram-Schmidt Process) Xg,4, X5, ..., X, in the space
such that the set X,, X,, ..., X, is an orthonormal basis.

THE GRAMIAN. Let X, XQ,...,X¢> be a set of n-vectors with complex elements and define the
Gramian matrix.

XoXy XpoXp oo XpoXy Xi X XX, - XX,

XorXy Xp-X, oo XpeXp XoXy X3X, o X3 X,
(14.7) G = =

XpXs XpXo oo XpX, XpXy XX, o X3X,

Clearly, the vectors are mutually orthogonal if and only if G is diagonal.
Following Problem 14, Chapter 17, we may prove

VL. For a set of n-vectors X,, X, ..., Xy with complex elements,
holds if and only if the vectors are linearly dependent.

G|>0. The equality
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UNITARY MATRICES. An n-square matrix A is called unitary if (Ay4 = A(AY = I, that is if (A= A"
The column vectors (row vectors) of a unitary matrix are mutually orthogonal unit vectors.

Paralleling the theorems on orthogonal matrices of Chapter 13, we have

VII. The column vectors (row vectors) of an n-square unitary matrix are an orthonormal
basis of I(C), and conversely.

VIII. The inverse and the transpose of a unitary matrix are unitary.
I1X. The product of two or more unitary matrices is unitary.

X. The determinant of a unitary matrix has absolute value 1.

UNITARY TRANSFORMATIONS. The linear transformation
(14.8) Y = A4X
where A is unitary, is called a unitary transformation.

XI. A linear transformation preserves lengths (and hence, inner products) if and only
if its matrix is unitary.

XII. If ¥ =AX is a transformation of coordinates from the F-basis to another the Z-
basis, then the Z-basis is orthonormal if and only if 4 is unitary.

SOLVED PROBLEMS

1. Given X = [1+4i,—i, 11 and Y = [2+3i,1—2i,i),

(o) find X.Y and Y.X (c) verify X.Y +Y.X = 2R(X.Y)
(by verify X.Y =Y.X (dy verify X.Y —Y.X = 2C(X.-1)
2+ 3i]
@ XY = XY = [1-ii.1]|1-2i| = (1-i)2+30) +i(1—2) + 1(¢) = T+ 3§
i ol
1+
Y. X = VX = [2-38i,1+2i, =i ]| —i| = 7-3i
L 1

(b) From (a): Y-X, the conjugate of Y-X, is 7+3i = X-Y.
ey X-Y +Y-X (T+3i) + (7T-3i) = 14 = 2(7) = 2RXY)
d) XY =YX = (T+3i) —(7-30) = 6 = 2(3) = 20(X-Y)

2. Prove the Schwarz Inequality: |X-Y] < JX|-|Y].

As in the case of real vectors, the inequality is true if X =0 or Y = 0. When X and Y are non-zero
vectors and a is real, then

. 2
laX+Y | = (@X+Yy-@X+Y) = aX-X+aXY+Y- X +¥-Y = x|+ 2R+ Y] > o
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Since the quadratic function in e is non-negative if and only if its discriminant is non-positive,

rx-1? - |xIPl¥* < o and Rx-by <
f X-Y =0. then |X-¥| = RX-¥)< If X-Y #0, define ¢ |;(( ’}’II
Then R(cx-¥y < |ex|-|¥] - |c|||X|| vl = Ixl-Ivl  white, by 1438y, Reex-vy -

Rleex-m] = |x.¥|. Thus, |x.¥|< ||x|-]¥Y] forall Xand?Y.

3. Prove: B = (AYA is Hermitian for any square matrix 4.

(BY = {A4Y = (ﬁ) = (A¥Y4 = B and B is Hermitian.

4.1f A =B+iC is Hermitian, show that (4Ay4 is real if and only if B and C anti-commute.
Since B+iC is Hermitian, (B+iCY = B+iC; thus.
(AyA = (B+iCY(B+iC) = (B+iC)(B+iC) = B2 + i{(BC+CB) - C?

This is real if and only if BC+CB =0 or BC = —CB ; thus. if and only if B and C anti-commute.

5. Prove: If 4 is skew-Hermitian, then +i4 is Hermitian.
Consider B = —{4. Since 4 is skew-Hermitian, (Z)’ = —A4. Then
(BY = (=idY = i(AY = i(-A) = -id - B

and B is Hermitian. The reader will consider the case B =i4.

SUPPLEMENTARY PROBLEMS

6. Given the vectors X =[i,2i,1]" X,=[1,1+:,0]), and Xg=[i,1-:i.27,
(2) find X;-X, and X,-Xg,
(b) find the length of each vector X,
(cy show that [1—i,-1.1~i]" is orthogonal to both X; and X,
(d) find a vector orthogonal to both X, and Xg.

Ans. (a) 2=3i.—i (5 V6.3, V7 (d) [~1-5i.i.3-i]
7. show that [1+4,4,1]", [i,1-4,0)", and [1—i, 1,3 1" are both linearly independent and mutually orthogonal.
8. Prove the relations (14.3).
9. Prove the Triangle Inequality.
10. Prove Theorems I-IV.

11. Derive the relations (14.6).
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

Using the relations (14.6) and the given vectors in order, construct an orthonormal basis for V4(C) when the
vectors are

(@ [0.1.-1). [1+i1,1], [1-i.1.1]

& [1+i.i.17, [2.1-2,2+i), [1-i.0.=i].

, R ’, 1. 1 s 1 17
Ans. (@) [0.3v2. -5v2], [21+). 3. 31, [- =i, —=@1+D), —=1+)]
2 V2 22 2/2
[ 1 1-5; 3+3i]/ [7—i -5 —6+3i],
2/3 4/3 ' 437 "2/30 T 2v/30° 2¢/30
Prove: If A is a matrix over the complex field, then 4+4 has only real elements and 4 ~ 4 has only pure
imaginary elements.

by [z(1+i).5i. 3],

Prove Theorem V.

If A is n-square, show
(a) A’A is diagonal if and only if the columns of 4 are mutually orthogonal vectors.
(by A’A =1 if and only if the columns of 4 are mutually orthogonal unit vectors.

Prove: If X and Y are n-vectors and 4 is n-square, then X-AY = AX.Y.
Prove Theorems VIE-X.

Prove: If A is skew-Hermitian such that /+A4 is non-singular, then B = (I—A)(I+A)_1 is unitary.

0 i 1+i
0 1+¢
Use Problem 18 to form a unitary matrix, given (a) L+ N ) i 0
—1+i i
-1+7 & 0

~9+8 —-10—-4 -—-16-18i
1]-1+2 —-4-2 1 . . ;
Ans. (a) 5 ., D 29 —-2-24 1+12i ~10—-4&

2-4 —-2-i
4-10; -2-24 —9+8i

Prove: If A and B are unitary and of the same order, then AB and BA are unitary.
Follow the proof in Problem 10, Chapter 13, to prove Theorem XI.

Prove: If A is unitary and Hermitian, then 4 is involutory.

3+

4+3;

Show that -3 1/4/3 is unitary.
z V3 215
i . 5¢
3 —i/V3 =
215
-1
Prove: If A is unitary and if B = AP where P is non-singular, then PB is unitary.

Prove: If A is unitary and I+A4 is non-singular, then B = -A){ +A)'1 is skew-Hermitian.



Chapter 15

Congruence

CONGRUENT MATRICES. Two n-square matrices 4 and B over F are called congruent, C, over F if
there exists a non-singular matrix P over F such that

(15.1) B = PAP
Clearly, congruence is a special case of equivalence so that congruent matrices have the same
rank.

When P is expressed as a product of elementary column matrices, P’ is the product in re-
verse order of the same elementary row matrices; that is, 4 and B are congruent provided 4 can
be reduced to B by a sequence of pairs of elementary transformations, each pair consisting of
an elementary row transformation followed by the same elementary column transformation.

SYMMETRIC MATRICES. In Problem 1, we prove

I. Every symmetric matrix A over F of rank r is congruent over F to a diagonal matrix
whose first r diagonal elements are non-zero while all other elements are zero.

Example 1. Find a non-singular matrix P with rational elements such that D = PAP is diagonal, given

12 3 2

23 5 8
4 =

35 8 10

28 10 -8

In reducing A to D, we use [A ]] and calculate en route the matrix P’. First we use
Hp(~2) and Kypy(—2), then Hgy(—3) and Kai(—3), then Hyu(—2) and K4q(—2) to obtain zeroes
in the first row and in the first column. Considerable time is saved, however, if the three
row transformations are made first and then the three column transformations. If 4 is not then
transformed into a symmetric matrix, an error has been made. We have

12 3 211000 1 0 0 0! 1000
| ]
23 5 810100 0 -1 -1 41 -2100
[4H] = : ¢ |
35 81010010 0-1-1 4{-3010
2810 -81000 1 0 4 4 -121-200 1
1 00 0| 1 000 oooilooo
|
i |
c°‘1°°i‘21°°c°‘1°°i‘21°°
~lo 0001 -1 -110 040 (~10 401
0 004! 10 401 0001 -1 -110
= [pP]

115
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1 -2 -10 —1

0 1 4 —1
Then P =

0 O 0 1

0 0 1 0

The matrix D to which 4 has been reduced is not unique. The additional transformations

1 000
; . . . . 0-100 .
Hs(3) and K4(z), for example, will replace D by the diagonal matrix 0 010 while the
0 00O
1 0060
. 0-900 . ,
transformations H,(3) and K,(3) replace D by 0 . There is, however, no pair of
0 000

rational or real transformations which will replace D by a diagonal matrix having only non-neg-
ative elements in the diagonal.

REAL SYMMETRIC MATRICES. Let the real symmetric matrix A be reduced by real elementary
transformations to a congruent diagonal matrix D, that is, let PAP = D. While the non-zero
diagonal elements of D depend both on 4 and P, it will be shown in Chapter 17 that the number
of positive non-zero diagonal elements depends solely on A.

By a sequence of row and the same column transformations of type 1 the diagonal elements
of D may be rearranged so that the positive elements precede the negative elements. Then a
sequence of real row and the same column transformations of type 2 may be used to reduce the
diagonal matrix to one in which the non-zero diagonal elements are either +1 or —1. We have

II. A real symmetric matrix of rank r is congruent over the real field to a canonical

matrix
Ip 0 0
(15.2) cC = 0 _Ir—ﬁ 0
0 0 0

The integer p of (15.2) is called the index of the matrix and s = p—(r—p) is called the
signature.

Example 2. Applying the transformations Hpg, Kog and Ho(3), KQ(%) to the result of Example 1, we have

1 000! 1 000 10 00: 1 000
0-100, -2 100 061 00| -5 203

(4111 & : £ : 2 - (¢
0 040 ' -10 401 00-10!-2 100
0 000! —-1-110 00 00! -1-110

and Q4Q = C. Thus, 4 is of rank r = 3, index p = 2, and signature s = 1.

III. Two n-square real symmetric matrices are congruent over the real field if and only
if they have the same rank and the same index or the same rank and the same signature.

In the real field the set of all n-square matrices of the type (15.2) is a canonical set over
congruence for real n-square symmetric matrices.
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IN THE COMPLEX FIELD, we have

IV. Every n-square complex symmetric matrix of rank r is congruent over the field of
complex numbers to a canonical matrix

(15.3) c = 7

Example 3. Applying the transformations Hg(i) and K4(i) to the result of Example 2, we have

10 00! 1 000 1000! 1 000
| | 1 |
- 3 0100! =5 20 5 }

00—10{—2 100 0010:—21 i 00

00 001i-1-110 00001 -1-110
. I5 0
and RAR = D = i

00 See Problems 2-3.

V. Two n-square complex symmetric matrices are congruent over the field of complex
numbers if and only if they have the same rank.

SKEW-SYMMETRIC MATRICES. If 4 is skew-symmetric, then
(PAPY = PAP = PE=AP = =—PAP
Thus,
VI. Every matrix B = PAP congruent to a skew-symmetric matrix 4 is also skew-

symmetric,

In Problem 4, we prove

VII. Every n-square skew-symmetric matrix 4 over F is congruent over F to a canoni-
cal matrix

(15.4) B = diag (D, D, ..., D;,0,...,0)

01 .
where D, = [ ] (:=1,2,...,t). Therank of 4is r= 2t

-1 0 See Problem 5.

There follows

VIII. Two n-square skew-symmetric matrices over F are congruent over F if and only
if they have the same rank.

The set of all matrices of the type (15.4) is a canonical set over congruence for n-square
skew-symmetric matrices.

HERMITIAN MATRICES. Two n-square Hermitian matrices 4 and B are called Hemmitely congruent,
[HC ], or conjunctive if there exists a non-singular matrix P such that

(15.5) B = PAP
Thus,
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IX. Two n-square Hermitian matrices are conjunctive if and only if one can be obtain-
ed from the other by a sequence of pairs of elementary transformations, each pair consist-
ing of a column transformation and the corresponding conjugate row transformation.

X. An Hermitian matrix A of rank r is conjunctive to a canonical matrix

Iﬁ 0 0
(15.6) C = 0 -—l,,_ﬁ 0
0 0 0

The integer p of (15.6) is called the index of A and s = p—(r—p) is called the signature.
XI. Two n-square Hermitian matrices are conjunctive if and only if they have the same

rank and index or the same rank and the same signature.

The reduction of an Hermitian matrix to the canonical form (15.6) follows the procedures

of Problem1 with attention to the proper pairs of elementary transformations. The extreme
troublesome case is covered in Problem 7.

See Problems §-17.

SKEW-HERMITIAN MATRICES. If 4 is skew-Hermitian, then
(PAPY = (PAPy = —PAP
Thus,

XII. Every matrix B = PAP conjunctive to a skew-Hermitian matrix 4 is also skew-
Hermitian.

By Problem5, Chapter14, H = —iA is Hermitian if 4 is skew-Hermitian. By Theorem X
there exists a non-singular matrix P such that

_ Iﬁ 0 0
PHP = C = |0 =l 0
0 0 0

Then iP’HP = iP(—iA)P = PAP = iC and
ilﬁ 0 0
(15.7) B = PAP = |0 =il 0©
0 0 0

Thus,

XIIl. Every n-square skew-Hermitian matrix 4 is conjunctive to a matrix (15.7) in
which r is the rank of 4 and p is the index of —i4.

XIV. Two n-square skew-Hermitian matrices A and B are conjunctive if and only if
they have the same rank while —i4 and —iB have the same index.

See Problem 8.
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SOLVED PROBLEMS

1. Prove: Every symmetric matrix over F of rank r can be reduced to a diagonal matrix having exactly
r non-zero elements in the diagonal.

Suppose the symmetric matrix 4 = [au] is not diagonal. If ay; # 0. a sequence of pairs of elementary
transformations of type 3. each consisting of a row transformation and the same column transformation, will
reduce 4 to

Qqq 0 0 0
0 by by bop
0 bpo byg by,
Now the continued reduction is routine so long as boo, €3z, ... are different from zero. Suppose then
that along in the reduction, we have obtained the matrix
G110 0
0 boo o 0
0 0 kss 0 0
0 0 ks+1, S+2 ks+1 n
0 0 0 kgin s41 kgro sio ksion
0 0 .. 0 by, 51 kn, S+2 ek J

in which the diagonal element kst1 s+1= 0. If every kij = 0. we have proved the theorem with s = r. If,
however. some kijv 8ay ksiy, seq # 0. we move it into the (s+1.s+1) position by the proper row and column
transformation of type 1 when u = v; otherwise, we add the (s+u)th row to the (s+v)th row and after the
corresponding column transformation have a diagonal element different from zero. (When a14 = 0, wWe proceed
as in the case ksﬂ_ s+1 = 0 above)

Since we are led to a sequence of equivalent matrices, 4 is ultimately reduced to a diagonal matrix
whose first r diagonal elements are non-zero while all other elements are zero.

1 22
2. Reduce the symmetric matrix 4 = |2 3 5| to canonical form (15.2) and to canonical form (15.3).
255
In each obtain the matrix P which effects the reduction.

1221100 1L 00y 100 1 001 100 10 0! 100
| |
[4:7) = J235 010/ Clo—11i-210]Clo-10!-210lclooa 0! -411
1 ~ 1 ~ i ~ t
2551001 0 11!-201 0 02 1-411 00-11-210
= [DIP]]
To obtain (15.2), we have
10 0! 100 0 0 1 0 o0
, | | ’
(DiPll = fo2 0o!l-a11]|C 1 0! —2¢/2 52 5vV2| = [C!P]
| (
00-11-210 0-1! -2 1 o
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1 -2/2 -2
and P = |o vz 1
0 3vVZ 0
To obtain (15.3), we have
10 0, 100 100, 1 0 0
(iPl = lo2 01-4a1 1] & fo10]-2v2avzavz| = [CiP]
00-11-210 0011 2 - 0
—2v/2 2
and P = 0 V2 —i
V2 0
3. Find a non-singular matrix P such that PAP is in canonical form (15.3), given
1 11 1+2
A = I 0 2—1
141 2—i 1042
1;1+zi1oo i 0 05100
(4111 = | i o 2—ii01o€o13—zz§ - 10
14 2—i 10+2{1 0 0 1 0 3-2 10 | -1-i{ 01
10 o0 | 1 0o o 100 1 0 0
I
2010i-i10§,01o§—i 1 0
0 0 5+12% | 1+2 —-3+2 1 o 0 1: T+4i —5+12 3-2i
' 13 13 13
= [¢ciP]
T+ 4
1= 13
—5+12
Here, P = 0 1 —i3
3-9
0 13

4. Prove: Every n-square skew-symmetric matrix 4 over F of rank 2¢ is congruent over F to a matrix
B = diag(Dy, D, ..., D:,0,...,0)
where D; = 01 , (i=1,2,...,0.
—1 0

If A=0, then B=A4. If 4 #0, then some ajj = —ajj # 0. Interchange the ith and first rows and the
jth and second rows, then interchange the ith and first columns and the jth and second columns to replace

A by the skew-symmetric matrix | —aj; 0 . Next multiply the first row and the first column by 1/a;;
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|
|
F, . .
toobtain | -1 0 i 21 and from it, by elementary row and column transformations of type 3, obtain
Fy | E,
}
01 (1) |0 B D, 0
et 1 I
0 | F,
If F,= 0. the reduction is complete; otherwise. the process is repeated on F,. .... until B is obtained.

5. Find a non-singular matrix P such that P’AP is in canonical form (15.4), given

0 0 2 4
1 —

4 0 o 3
-2 -1 0 -2

-4 3 2 0

Using ai3 # 0. we need only interchange the third and second rows followed by the interchange of the

0 02 4/ 1000 02 0 41000
1 1
0 01-3/0100 . |-20-1-2/0010
third and second columns of ) to obtain !
-2 -10-2!0010 01 0-3/0100
|
-4 32 0/0001 -42 3 010001

Next. multiply the first row and first column by %; then proceed to clear the first two rows and the first
two columns of non-zero elements. We have. in turn,

[~ {
01 0 2/%5000 010 0! 20 00
1
-10-1-20010 -100 0! 00 10
1 and 1 |
01 0-3/!0100 000-5!-21 00
t ]
-2 2 3 010001 005 0! -10-21
Finally, multiply the third row and third column by —-1/5 to obtain
01 00, 1/2 o0 00O
]
-10 00, o0 0 10 D, o},
! =
00 01, 1/10 -1/5 0 0 0 D,
I
00-10, -1 0 -2 1
1/2 0 1/10 -1
0 0-1/5 0 ,
Thus when P = o 1 o .| P’AP = diag(D4, Dy).

0 0 0 1

6. Find a non-singular matrix P such that P’AP is in canonical form (15.6), given
1 1—i —3+2;
A = 1+: 2 —i
-3-2i 0
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1 1-i =342 {100 10 o! 1 00
]
(4111 = 1+i 2 - fo10lcfoo 5}-1-i10
~ |
-3-2 i 0 1001 05 -13 ! 3+2 01
1 0 0 E 1 0 o 10 0! 1 0 0
|
|
25 I 2-3; 5 I 2-3 13 1
0 — 0 ! 1 — C 01 0 _— = —
< 13 T 13| ~ 513 5V13 /13
! 1
0 0 —13 | 3+2 0 1 bo34+2 1
00 -1 — 0 e —
toVI3 Vi3
= [cP7]
i T
2+3 3-2
5v13 /13
13
and P = 0 — 0
513
1 1
Vi3 V13
7. Find a non-singular matrix P such that P’AP is in canonical form (15.6), given
1 1+2i 2-3i
A4 = 1—2; 5 —4-92;
2430 —4+2 13
1 142i  2-3i ;100 1 00 ' 1 00
1
(417] = |1-22 5 —4-20 301 0]HC o o 5 | -1+2 10
i
2+43 —4+2 13 1001 0 -5 0 | —2-3% 01
1 00 ! 1 00 1 0 0 | 0 0
(
HC lo10 5! 2 1i|lHCJow o ! 2 1
. [ 1
0 -5 0 | —2-3 01 0 0 —-5/2 | —2-2 %i 3
10 0 ! 1 0 0
1
! 2 1 !
HC [0 1 0 | ——= — —
~ L V10 /10 +/10
)
|
[ S T
0 0 -1 ! io_i 1
VAT RVATURRVATY
= [€iP]
, 2 A
V10 /10
1 -
and P = 0 —
10 /10
0o —= L
Vio /10
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8. Find a non-singular matrix P such that P’AP is in canonical form (15.7), given
i -1 =1+
A = 1 0 1+2¢
1+ —1+2; 2
1 i 1+
Consider the Hermitian matrix H = —id = | —i 0 2-i
L1 —i 2+i 2

1 —1—2 —i|
The non-singular matrix P = j0o 1 1| is suchthat P'HP - diag[1.1.-1].
0 1 0

Then P'AP = diag[i.i.~i].

SUPPLEMENTARY PROBLEMS

9. Find a non-singular matrix P such that P’AP is in canonical form (15.2), given

1 2 0 [0 1 2 1 -10
(a)A=[1_2], & 4 =12 3 -1}. () 4 = |1 0 4}, (A4 =|-1 2
-2 3 0 -1 —2 |2 4 0 0 11
1 -2 2 V2 ~3/2 -1 11 -1
12
Ans.(a)P:[()l]_ B P =0 1 -1]. (&P =|3V2 V2 -3|. @ P =]o1 -1
0 1 | © 0 T 00 1
10. Find a non-singular matrix P such that P’AP is in canonical form (15.3), given
2i 1+i 2-4i
1 1+2
(a) A = . (b) A = 1+ 1+ —-1-2i
1+2 1+4i
2—-4 -1-2 -3-5
L ber- A=) N2 A+i/2
L-1—
Ans. (@) P = [0 i ] by P = 0 (1-i)/\/2 (~-3-2i)/13
0 0 (3+2i)/13
11. Find a non-singular matrix P such that P’AP is in canonical form (15.4), given
@ o1 o ‘b)'ooﬂ (©) gggg (d) ;)(1)3—2
A =1]-10 -3 A = 0 03 A=010_3 A=_21_0;
|-23 0 L‘Z‘?’O [0 2 -3 o —2130
Ans. - T
- by ¢y foo1o dH [10-
@ Foo s GO SRR, () 0oL @ ;1;;:;
P=qo1-2 P=joo 1 P=to102 P = 00—1/30
Lo 0 1 \_01 0
- 0001 00 o0 1
A L
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12.

13.

14.

15.

16.

17.

18.

19.

21.

Find a non-singular matrix P such that P’AP is in canonical form (15.6). given

L 1_si 1 1+i 2 1 1+i 3-2{
A = Loy A =f1-i 3 -, A =11-: -4
(@) [1+3i 0 ] ) i i (c) i 3 3-4
2 i 4 3+2 3+4 18
| 143 1 —-1—i (-5-0/\/5 1 —1—i (-2+5i)
Ans. (@) P = [0 ) ] by P = |O 1 -5 © P =}o 1 (=2 1)
0 0 1/V5 0o 0 1

Find a non-singular matrix P such that P’AP is in canonical form (15.7). given

e [ i —1-i =1
2 1
(a) A = [ L . ] (C) A = 1—L 0 1—-i
-1+ 1
L 1 —-1-i —i
i -1 1+i " 0 1 2+i
by 4 = 1 2% i @dy A = | -1 0 1-2i
—1+4i i 6i l_—2+i -1-2 0
L 14 [1 (1-i/v/2 -1
-1+:
Ans. (@) P = [o 1] @ P =|o 1Az -1
[ o 0 1
1 —i —-2+3f [1/\/2 (1-20)/A/10 —1/3/2
&P =0 1 -2-i @ P = |inNZ (-2-d/A/10  i/V2
0 0 1 L 0 1/4/10 0

If D = [ (1) (1)] show that a 2-square matrix C satisfies C’DC = D if and only if Ic=1.

Let A be a non-singular n-square real symmetric matrix of index p. Show that |4| >0 if and only if n —p
is even.

Prove: A non-singular symmetric matrix 4 is congruent {o its inverse.
Hint. Take P = BB” where BAB =1 and show that P4P = s

Rewrite the discussion of symmetric matrices including the proof of TheoremI to obtain (15.6) for Hermitian
matrices.

Prove: If A ,\C, B then 4 is symmetric (skew-symmetric) if and only if B is symmetric (skew-symmetric).

Let S be a non-singular symmetric matrix and 7 be a skew-symmetric matrix such that (S+ T)(S~ T)is non-
singular. Show that P’SP = S when
P = (S+TyYYS-1T)

Hint. PSP = [(S=TY XS+ T)S ™ (S=Ty(S+Ty" 1.

.Let S be a non-singular symmetric matrix and let T be such that (S+ TY(S - T) is non-singular. Show that

if PSP =S when P =(S+TY*(S-T) and I+P is non-singular, then T is skew-symmetric.
Hint. T = SU-PYJ+Py 't = SU+PYY I -P).

Show that congruence of n-square matrices is an equivalence relation.



Chapter 16

Bilinear Forms

AN EXPRESSION which is linear and homogeneous in each of the sets of variables (x,, x,, ..., Xp)
and (i, %, ..., % is called a bilinear form in these variables. For example,

1Y + 2%y, — 13xys — 4%y, + 18%y, — %03

is a bilinear form in the variables (%, %) and (¥y, ¥, ¥3)-

The most general bilinear form in the variables (x, %, ..., x;) and (¥, ¥, ..., %) may be
written as
fe.yy = G11%1Y1 + Go%1Yo + ¢+ ApXi Yy
+ Ay XYy F QX5 Y, + 00+ lopXo Yy
F s e e e e s v e e e e e s e e e e e
t A Xp Y1 + AuoXp Yo + v 0+ QAppXp Y

or, more briefly, as

moon
(16.1) fryy = X 3 ajxy
1=1 ]:1
A1y G0 * Gy Y1
[ ]021 Qoo * * ° Gop Yo
= Xy, Koy oee, X .
Apy Cpo * * ¢ Qpy Yn
= XAY

where X =[xy, %, ..., %5 1, A=[0a5], and Y =1y, %, ..., y,1"

The matrix A of the coefficients is called the matrix of the bilinear form and the rank of 4
is called the rank of the form.
See Problem 1.

Example 1. The bilinear form

1 01 Y1
X1¥1 * X1¥3 + Xoy1 + Xo¥s + Xgyz = [’ﬁ-xzxs 11 0f]y2
001 Y3

= XAy

125
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CANONICAL FORMS. Let the m x’s of (16.1) be replaced by new variables u’s by means of the lin-
ear transformation

n
(16.2) x = X bijuj, (i=1,2,...,m) or X=RBU
j=1

and the n ¥’s be replaced by new variables v’s by means of the linear transformation

(16.3) Y, =
j

We have XAY = (BUYA(CVYy = U(B’ACYV. Now applying the linear transformations U = IX,
V=1Y we obtain a new bilinear form in the original variables X (BAC)Y = X’'DY.

(¢=1,2,...,n) or Y =CV

n
C"v’
iV
< Cif Y

Two bilinear forms are called equivalent if and only if there exist non-singular transfor-
mations-which carry one form into the other.

1. Two bilinear forms with mxn matrices 4 and B over F are equivalent over F if and
only if they have the same rank.

If the rank of (16.1) is r, there exist (see Chapter5) non-singular matrices P and ( such
that
I, 0

PA =
¢ 0 0

Taking B = P’ in (16.2) and C = Q in (16.3), the bilinear form is reduced to

I, 0

(16.4) UPAQYV = U’ 0

Vo = uug + uv, + - -+ Uy,

Thus,

II. Any bilinear form over F of rank r can be reduced by non-singular linear transfor-
mations over F to the canonical form w,v, + uovy + ++- + u, vy,

101
Example 2. For the matrix of the bilinear form X4Y = X’|1 1 0|Y of Examplel,
001
100 10 O 1 0 -1 1 0 -1
I 010 01 O 01 0 01 1
8 001 00 1 0 1 00 1
= - - -
41 1011 0 10 1 100 1 0 1 0 10 0 100
3 110010 01-1-110 01-1-1 0 01 0~-110
001001 00 1 001 0 1 0 1 00 1 001
Q
I A 3¢
1-10 1 0 -1
Thus, X = PU = |0 1 O0|U and Y = QV = |0 1 1|V reduce X4Y to
0 01 00 1

1 00§5]1 01 1 0-1
Ul-1t 1 0lf1 10f[l0o1 1|V = ULV = upw, + uwo + ugvg
001 001 00 1
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The equations of the transformations are

X = Wy — U Y1 = 1 - Us
1 1 2

Xo = Uo and Yo = Vo + vg

Xg = Ug Ys = Vs

See Problem 2.

n n
TYPES OF BILINEAR FORMS. A bilinear form X 3 a;; x;y; = XAY is called

1=1 ]:1
symmetric symmetric
alternate . . skew-symmetric
L according as 4 is .
Hermitian Hermitian
alternate Hermitian skew-Hermitian

COGREDIENT TRANSFORMATIONS. Consider a bilinear form X’AY in the two sets of » variables

(%4, Xo, ..., %) and (y1,%,...,%). When the x’s and y’s are subjected to the same transforma-
tion X = CU and Y = CV the variables are said to be transformed cogrediently. We have

III. Under cogredient transformations X = CU and Y = CV, the bilinear form X'AY,
where 4 is n-square, is carried into the bilinear form U(CACYV.

1f 4 is symmetric, so also is C’AC: hence,

IV. A symmetric bilinear form remains symmetric under cogredient transformations of
the variables.

V. Two bilinear forms over F are equivalent under cogredient transformations of the
variables if and only if their matrices are congruent over F.

From TheoremI, Chapter 15, we have

VI. A symmetric bilinear form of rank r can be reduced by non-singular cogredient
transformations of the variables to

(16.5) QXYL+ XYy + st G XYy
From Theorems II and IV, Chapter 15, follows

VIL. A real symmetric bilinear form of rank r can be reduced by non-singular cogredient
transformations of the variables in the real field to

(16.6) X1V + XYoot XpYp = XpuaYpar — ot — Xy
and in the complex field to
(16.7) Gy + XYoo 4+ Xy
See Problem 3.

CONTRAGREDIENT TRANSFORMATIONS. Let the bilinear form be that of the section above. When
the x’s are subjected to the transformation X = (C_l)’U and the y’s are subjected to the trans-
formation Y = CV, the variables are said to be transformed contragrediently. We have



128 BILINEAR FORMS [CHAP. 16

VIII. Under contragredient transformations X = (C-l)’U and Y1= CV, the bilinear form
X’AY, where 4 is n-square, is carried into the bilinear form U(C AC)V.

IX. The bilinear form XTY = xy, + %% + -+- + %y, is transformed into itself if and
only if the two sets of variables are transformed contragrediently.

FACTORABLE BILINEAR FORMS. In Problem4, we prove

X. A non-zero bilinear form is factorable if and only if its rank is one.

SOLVED PROBLEMS

N
1 2 —~13 1 2 -13
. 2%, — 13%,75 — 4 15%,y, — = , =X Y
1. %y, + 250 %1Y3 XY + 10XYo — Xp¥3 |:x1 x2:| [_4 15 _1] Yo [—4 15 —'1:|

¥a

2. Reduce %y, + 2%%, + 32,Y5 — 2%yy4 + 2% — 2%)p + X%o¥a + 3%5)s + 3%gy: + 4x5Y5 + %y, to canon-
ical form.

1 2 3 =2
The matrix of the formis 4 = |2 —2 1 3]|. By Problem 6. Chapter 5, the non-singular matrices
3 0 4 1
1 1/3 —-4/3 —-1/3
1 00
0 -1/6 -5/6 1/6 I, 0 .
P={-2 10]and Q= are such that PAQ = . Thus, the linear transfor-
0 1] 1 0 0 Q
-1 -11
0 0 0 1
mations
1 4 1
Y1 = U1t 5”2 - §Us - 5”4
Xy = Ug— 2ug — ug Yy = ——évQ—%vg+%v4
X=PU or %y = up—us and Y =QV or
Ya = U3
x3 = Ug
Ya = LZ8
reduce X’AY to uivy + uovs.
12 3 2
3. Reduce the symmetric bilinear form XAY =X’ ‘3 g Z 1?) Y by means of cogredient transfor-
2 8 10 —8

mations to (16.5) in the rational field, (&) (16.6) in the real field, and (c) (16.7) in the complex
field.

1-2-10 -1 1 -2 ~-10 -1

(a) From Example 1, Chapter 15, the linear transformations X = 0 1 ¢-1 U, Y= 01 4 -1
0o 0 0 1 6 0 0 1

0 0 1 0 0 0 1 0
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reduce X4AY to uv; — uyvy + 4dugvs.

1 -5 -2 -1 1 -5 -2 -1
b Example 2, Chapter 15, the linear transformations X =|C 2 ! 1|y y_|0 2 1-1],
()F‘rom xample 4, apter B e linear transfor = 0 0 0 1 = 0 0 0 1
0 z 0 0 0 2 0 O
reduce XAY t0 uyvy + uptp — ugvg.
(¢) From the result of Example 2, Chapter 15, we may obtain
10 00! 1 000 1000! 1 000
01 00;-5 203|. (0100} -5 203
00-10,-2 100|l~]oo10!-2 i 00
00 00i-1-110 0000, —1-110
1 -5 -2 ~1 1 -5 -2 ~1
Thus, the linear transformations X = 0 2 Pl U, Y-= 0 2 v -1 V  reduce X4Y to
0 0 0 1 0 0 0 1
0 3 0 0 z 0 O

Uy + Uply + Ugls.

4. Prove: A non-zero bilinear form f(x,y) is factorable if and only if its rank is 1.

Suppose the form is factorable so that

and, hence, ajj = bjc;. Clearly, any second order minor of 4 = la;;], as
aij Gis ) a;b; a;bs N L
= = s
Gpj Aps akb]- apb, J ay ap
vanishes. Thus the rank of 4 is 1.

Conversely, suppose that the bilinear form is of rank 1. Then by Theorem I there exist non-singular
linear transformations which reduce the form to U{BACY = usv,. Now the inverses of the transformations

u; = ?r,/jx] and v; = ?si]’yj

earry uyv, into (2 rij%i) (2 sij¥) = f(xy) andso f(x.y) is factorable.
J J
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10.

11.

12.

13.

14.

110 3 3 -z
. Write the transformation contragredientto X =[0 1 1|U. Ans. Y=|-% & 3lv
101 i -7 3

SUPPLEMENTARY PROBLEMS

. Obtain linear transformations which reduce each of the following bilinear forms to canonical form (16.4)

(@) %y — 2%1¥s + 3%oyy + Xo¥p — 3Xo¥z — Xgy1 — Xg¥o — ¥3¥s3

31 ¢ 74 5 8
2 510 2 8 -2 47 3 5
by X'| -4 —11 Y. bd “ly, dy X’ Y
® . 5?; ) 11 -2 @ 5312 6
35 0 85 6 10
. Obtain cogredient transformations which reduce
1 2 3 1 31
(@) X'l 2 5 4|Y and (b) X'[3 10 2|Y to canonical form (16.6).
3 4 14 1 2 5
1 -2 -7 1 -3 —4/3/3
Ans. @)y C=|0 1 2 By €C=10 1 V3/3
0 0 1 0 0 +3/3

0
. If B,.B,.Cy,C, are non-singular n-square matrices such that By4,C; = BoAxG, = [(; Oil, find the transfor-

mation which carries X4,Y into UA,V.
Ans. X = (BiByU, Y = C,CV

. Interpret Problem 23, Chapter 5, in terms of a pair of bilinear forms.

Prove that an orthogonal transformation is contragredient to itself, that is X = PU, Y = PV.
Prove: Theorem IX.

’ . s 1 . . N P
If X4Y is a real non-singular bilinear form then X4 Y is called its reciprocal bilinear form. Show that when
reciprocal bilinear forms are transformed cogrediently by the same orthogonal transformation, reciprocal bi-
linear forms result.

Use Problem 4, Chapter 15, to show that there exist cogredient transformations X = PU, Y = PV which re-
duce an alternate bilinear form of rank r = 2t to the canonical form

UgVo — UpVy + Ug g — ugvg + **° + Ugt1 Vot — UotUot-1

Determine canonical forms for Hermitian and alternate Hermitian bilinear forms.
Hint. See (15.6) and (15.7).
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Quadratic Forms

A HOMOGENEOUS POLYNOMIAL of the type

n n

=1 7=1
whose coefficients a;; are elements of F is called a quadratic form over F in the variables
X1, X0, vovy xn.

Example 1. ¢ = xf + 2x§ - 7x§ - 4x, x, + 8x, x, 1s a quadratic form in the variables xj,xs, x3. The ma-
trix of the form may be written in various ways according as the cross-product terms —4x;xo
and 8xqxz are separated to form the terms a1o%1%, apr %0x1 and aigxixs, agixsx,. We shall
agree that the matrix of a quadratic form be symmetric and shall always separate the cross-
product terms so that aj; = aj. Thus,

Jv
q = xf + 2:522 - 7x§ - 4dx %, + 8x%4
1 -2 4
= X1-2 2 o|X
4 0 -7

The symmetric matrix 4 = [aij] is called the matrix of the quadratic form and the rank of
A is called the rank of the form. If the rank is r<n, the quadratic form is called singular;
otherwise, non-singular.

TRANSFORMATIONS. The linear transformation over F, X = BY, carries the quadratic form (17.1)
with symmetric matrix 4 over F into the quadratic form

(17.2) (BYYyA(BY) = Y(BABY
with symmetric matrix BAB.

Two quadratic forms in the same variables xy, x5, ..., x, are called equivalent if and onlyif
there exists a non-singular linear transformation X = BY which, together with Y =IX, carries
one of the forms into the other. Since BAB is congruent to 4, we have

I. The rank of a quadratic form is invariant under a non-singular transformation of the
variables.

II. Two quadratic forms over F are equivalent over F if and only if their matrices are
congruent over F.

From Problem 1, Chapter 15, it follows that a quadratic form of rank r can be reduced to
the form

(17.3) hoyZ + hyyZ + ooo ¥ hy?, ki #0

131
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in which only terms in the squares of the variables occur, by a non-singular linear transforma-
tion X =BY. We recall that the matrix B is the product of elementary column matrices while B’
is the product in reverse order of the same elementary row matrices.

1 -2 4
Example 2. Reduce ¢ = X'| -2 2 0|X of Example1l to the form (17.3).
4 0 -7
1-2 41100 1 0 0! 100
Wehave [4 1] = |-2 2 02010 clo-2 8i 210
4 0-7100 0 8 -23; -4 01
1 001100
C 0-205210 = [D B]
0 09,441
124

Thus, X = BY = |0 1 4|Y reducesqto ¢ = 3°—2y°+09y”.

001 See Problems 1-2.

LAGRANGE’S REDUCTION. The reduction of a quadratic form to the form (17.3) can be carried out
by a procedure, known as Lagrange’s Reduction, which consists essentially of repeated com-
pleting of the square.

Example 3. ¢ = xf + 2x§ - '7x§ - 4x1x2 + 89519«::3
= {xf— 4x1(x2—2x3)} + 2x§ - 'Dcf5
= {xf— 4x1(x2—2x3)+ 4(x2—2x3)2} + 2x§ - '796123 - 4(::2—2:53)2
= (x1—2x2+4x3)2 - 2(x§—8x2x8) - 23x§

_ 2 2 2 2
= (x1 - 2x2+ 4xs) - 2(x2 - 82:2953 + 16x3) + 9x3

_ 2 2 2
= (ac1 - 2x2+ 4x3) - Z(x2 - 4x3) + 9x8
¥ = X1 - 2x0 + 4xg x = yp1 t 2}’2 + 4}’ 3
Thus, yo = Xp — 4xsg or X5 = yo t 4ys
yz3 = x3 X3 = ¥s

reduces g to y2 — 2y2 + 9¢2,
q yl y2 3
See Problem 3.

REAL QUADRATIC FORMS. Let the real quadratic form ¢ = X4X be reduced by a real non-singular
transformation to the form (17.3). If one or more of the hi are negative, there exists a non-
singular transformation X =CZ, where C is obtained from B by a sequence of row and column
transformations of type 1, which carries ¢ into

(174) 3122 + s Z; + ... + Sﬁzﬁ - Sp+1 Z;.{.l - .. - srzf,

in which the terms with positive coefficients precede those with negative coefficients.
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Now the non-singular transformation
w; = Vsizi, (i=1,2..7

w: = z; (j=r+l,r+2,...,n)

J J ’
or
1 1 1
Z = diag{->=,—.,...,——.1,1,...,1}W
carries (17.4) info the canonical form
2 2 2 _ 2 e — 2
(17.5) wy + w, + + wﬁ w1>+1 w,

Thus, since the product of non-singular transformations is a non-singular transformation,
we have

III. Every real quadratic form can be reduced by a real non-singular transformation to

the canonical form (17.5) where p, the number of positive terms, is called the index and r
is the rank of the given quadratic form.

Example 4. In Example 2, the quadratic form ¢ = xﬁ + ng - 7x§ - 4%1;%::2 + 8x1x3 was reduced to

: : + 7
q = y12 - 2y§ + ng. The non-singular transformation yq = zq, yo = z3, y3 = z2 carries ¢
into q" = zf + 9z§ - 2z§ and the non-singular transformation zi = wy, zp = wo/3, zg = wa/V2
" nt o 2 2 2
reduces ¢ to ¢ = wi+ w, - wg.

Combining the transformations, we have that the non-singular linear transformation

- 4 Vo
x = wy * 3ws + V2 ws
1 1 w2 1 a3 Va
% = Lo + 5V2ug or x = |o 43 3v2|W
1 0 1/3 0
xz = 3 w2
reduces q to q'“ = wf+ w22 - wg. The quadratic form is of rank 3 and index 2.

SYLVESTER’S LAW OF INERTIA. In Problem 5, we prove the law of inertia:

IV. If a real quadratic form is reduced by two real non-singular transformations to
canonical forms (17.5), they have the same rank and the same index.

Thus, the index of a real symmetric matrix depends upon the matrix and not upon the ele-
mentary transformations which produce (15.2).

The difference between the number of positive and negative terms, p - (r—p), in (17.5) is
called the signature of the quadratic form. As a consequence of Theorem IV, we have

V. Two real quadratic forms each in n variables are equivalent over the real field if
and only if they have the same rank and the same index or the same rank and the same sig-
nature,

COMPLEX QUADRATIC FORMS. Let the complex quadratic form X'’4X be reduced by a non-singular
transformation to the form (17.3). It is clear that the non-singular transformation

‘/’:yf«’ (L

1

z4

1,2,...,n

zj ¥ , (j=rtl,r+2,...,n)
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or
1 1 1
Y = diag{—=.,—=,...—=.1,1,...,1)Z
carries (17.3) into
(17.6) 2+ o+ 42

Thus,

VI. Every quadratic form over the complex field of rank r can be reduced by a non-
singular transformation over the complex field to the canonical form (17.6).

VII. Two complex quadratic forms each in n variables are equivalent over the complex
field if and only if they have the same rank.

DEFINITE AND SEMI-DEFINITE FORMS. A real non-singular quadratic form ¢ = X'AX, A| #0, in
n variables is called positive definite if its rank and index are equal. Thus, in the real field a
positive definite quadratic form can be reduced to yf + yj + ot yj and for any non-trivial set
of values of the x’s, ¢ > 0.

A real singular quadratic form ¢ = X'4X, |A| =0, is called positive semi-definite if its
rank and index are equal, i.e., r = p<n. Thus, in the real field a positive semi-definite quad-
ratic form can be reduced to y? +y2 +---+y2, r<n, and for any non-trivial set of values of
the «’s, ¢20.

A real non-singular quadratic form ¢ = X’4X is called negative definite if its index p=0,
i.e., r=n, p=0. Thus, in the real field a negative definite form can be reduced to -yZ - yZ -

- - y2 and for any non-trivial set of values of the x’s, ¢<0.

A real singular quadratic form ¢ = X'AX is called negative semi-definite if its index p=0,
i.e., r<n, p=0. Thus, in the real field a negative semi-definite form can be reduced to
—yf - y22 - y,f and for any non-trivial set of values of the x’s, ¢ <0.

Clearly, if ¢ is negative definite (semi-definite), then ~¢q is positive definite(semi-definite).

For positive definite quadratic forms, we have

VI If g = X'4X is positive definite, then |4| > 0.

PRINCIPAL MINORS. A minor of a matrix 4 is called principal if it is obtained by deleting certain
rows and the same numbered columns of A. Thus, the diagonal elements of a principal minor of
A are diagonal elements of 4.

In Problem 6, we prove

IX. Every symmetric matrix of rank r has at least one principal minor of order r differ-
ent from zero.

DEFINITE AND SEMI-DEFINITE MATRICES. The matrix 4 of a real quadratic form ¢ = X'4X is call-
ed definite or semi-definite according as the quadratic form is definite or semi-definite. Wehave

X. A real symmetric matrix A is positive definite if and only if there exists a non-
singular matrix C such that 4 = C'C.

XI. A real symmetric matrix 4 of rank r is positive semi-definite if and only if there

exists a matrix C of rank r such that A =C'C.
See Problem 7.
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XII. If 4 is positive definite, every principal minor of A is positive.
See Problem 8.

XIIL. If A is positive semi-definite, every principal minor of 4 is non-negative.

REGULAR QUADRATIC FORMS. For a symmetric matrix A = [aij] over F, we define the leading
principal minors as
a4 Mo I3
» Ps = | @2 Gop G2g|, ..., Pp T |A|

Q31 asgp Gzg

Q11 a2
Qo1 Qo9

(17.7) Po=1, p1=a@m1, p2= I

In Problem 9, we prove

XIV. Any n-squale non-singular symmetric matrix A can be rearranged by interchanges
of certain rows and the interchanges of corresponding columns so that not both p,_, and
Pn-2 are zero.

XV. If 4 is a symmetric matrix and if p,_.,p, #0 but p,_, =0, then p,_, and p,
have opposite signs.
1121
J11 22
Example 5. For the quadratic form XAX =X 993 4 X, po=1,p1=1, p>=0, pa=0, ps= |A| =1,

1241

Here Og3 # 0; the transformation X = KM’)\(J yields

T4

1
2
1
4

DN = = e
DN N =
W NN

for which po=1, p1 =1, po=0, pg=-1, pg=1. Thus, for (i) not both p, and ps are zero.

A symmetric matrix 4 of rank r is said to be regularly arranged if no two consecutive p’s
in the sequence po,p1,...,p, are zero. When A is regularly arranged the quadratic form X'4X
is said to be regular. In Example 5, the given form is not regular; the quadratic form (i) in the
same example is regular. ‘

Let A be a symmetric matrix of rank r. By Theorem IX, 4 contains at least one non-
vanishing r-square principal minor # whose elements can be brought into the upper left corner
of A. Then p, #0 while p,,, = py,, =...= p,=0. By Theorem XIV, the first r rows and the
first r columns may be rearranged so that at least one of p, _, and p,_, is different from zero.
If p,_, #0 and p,_, =0, we apply the above procedure to the matrix of p,_,; if p,._, #0,
we apply the procedure to the matrix of p,_,; and so on, until M is regularly arranged, Thus,

XVI. Any symmetric matrix (quadratic form) of rank r can be regularly arranged.
See Problem 10.

XVIL. A real quadratic form X'AX is positive definite if and only if its rank is n and
all leading principal minors are positive,

XVIII. A real quadratic form X'’AX of rank r is positive semi-definite if and only if
each of the principal minors pg, ps, ..., p, is positive. ‘
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KRONECKER’S METHOD OF REDUCTION. The method of Kronecker for reducing a quadratic form
into one in which only the squared terms of the variables appear is based on

XIX. If ¢ =XAX is a quadratic form over F in n variables of rank r, then by a non-

~ o
singular linear transformation over F it can be brought to ¢ = X’BX in which a non-
singular r-rowed minor C of 4 occupies the upper left corner of B. Moreover, there exists
oo [a¥]
a non-singular linear transformation over F which reduces ¢ to ¢”" = X’CX, a non-singular
quadratic form in r variables.

XX. If ¢ = X'4X is a non-singular quadratic form over F in n variables and if p,_, =
Opy # 0, the non-singular transformation

X = ¥t Uiy, (i=12,..,n-1)
Tn = Oppiy
or -
[100 ... 0 au
010 ... 0 Ogy
X =BY = | oo, Y
0 0 0 . 1 an_l n
000 .0 dy,
n-1 n-1 5 . ) ]
carries ¢ into X X @ii¥i¥j + Pn-1PnY¥n 1in which one squared term in the variables
1=1 J=1
has been isolated.
1 -2 4 1 _9
Example 6. For the quadratic form X4X = X'| -2 2 0|X, ps = Ogq = s 9| = -2 #0. The
4 0 -7
non-singular transformation
x = m t Qigys = 3 - 8y3 10-8
X = yo + Oogyg = yo — 8ya or X =101-8}Y
Xz = Oéasyg = - 2:}’3 00 -2

reduces X4X to

1 0 0 1 -2 4]]10 -8 1 -2 0
Y| o 1 offt-2 2 of]0o1-8|Y Y|-2 2 o|y
-8 -8 -2 4 0-7/(0 0 -2 0 0 36

in which the variable y3 appears only in squared form.

XXI. If ¢ = XAX is a non-singular quadratic form over F and if Opa,n-1= Opy = 0
but &, #0, the non-singular transformation over F

% = ¥ + O nayna + Qinyn, (i=1,2,...,n—-2)
Xpq = Op-a,n¥Yn, Xn = Op, n-1Yn-
or
(100 ... 0 Gy gy ]
010 ...0 Ggpa oy
X = BY o | e v

000 ... 1 Opgn-y Aneonp
000 ..0 0 U, 7
10 00 ... 0 Gp,p 0 ]
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n-2 nN—2o

carries g into '21 _21 aijyYiyj + 20p, n-1PnYn-1¥n.
1: ]:

The further transformation

Yi = 2z, (i=12..,n-2)
Yn-1 = 2Zp-1 — 2n
Yn = Zp-1 t 2Zp
n—2 n—2 2
yields X X ajjzizi + 20, . pua(Zng — z7) in which two squared terms with opp-
1=1 ]:1 ?
site signs are isolated.
Example 7. For the quadratic form
1 21
X4x = X|2 4 3]x
131

Ogo = Ogg =0 but Oz = —1 # 0. The non-singular transformation

% = oyt Quoys + Oigyg 1 1 2
Xo = d23y3 or X = 0 0 -1)Y
x3 = Ao yo 0-1 0

reduces X’4X to

1 0o offr1 211 1 2 100
Y11 0-1]1243]|0 0-1Y = Y|001|Y = YBY = y2 + 24,
2-1 0ff131f{lo-1 0 010

The transformation

Y1 = 21 10 0
Yo = Z0 — 23 or Y = 01-1|Z
¥s = zo t+ za3 01 1
carries YBY into
1 ooll100f|]10 o 10 0
Zlo 1 1l]loo1|l]o1-1lz = 2z|o 2 oz=z’;’+2z§—2z§
0-11{}lo10]lo1 1 00 -2

Consider now a quadratic form in n variables of rank r. By Theorem XIX, g can be re-
duced to ¢4 = X’AX where 4 has a non-singular r-square minor in the upper left hand corner
and zeros elsewhere. By Theorem XVI, 4 may be regularly arranged.

If pr—y #0, Theorem XX can be used to isolate one squared term

(17.8) Pr-1PrYs

If pro1=0 but ®,_4 ,_4 #0, interchanges of the last two rows and the last two columns
yield a matrix in which the new py4 = Oyp_q,r-q #0. Since pp, # 0, Theorem XX can be used
twice to isolate two squared terms

(17.9) + O

a 2 2
Pro%ra, r-1¥ra -1, T=1Pr Yy

which have opposite signs since pr» and p, have opposite signs by Theorem XV.
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If pr4 =0 and Ory,+—1 =0, then (see Problem 9) @ r—1 #0 and Theorem XXI can be
used to isolate two squared terms

(17.10) 2%y, 7y pr(ys-1 — ¥7)
having opposite signs.

This process may be repeated until the given quadratic form is reduced to another con-
taining only squared terms of the variables.

In (17.8) the isolated term will be positive or negative according as the sequence pr— p,
presents a permanence or a variation of sign. In (17.9) and (17.10) it is seen that the se-
quences p,_,, Oy, g Py 80 pr_p, Oy p g, Py present one permanence and one variation
of sign regardless of the sign of ®p4 ,-, and d, ,5. Thus,

XXII. If ¢ = XAX, a regular quadratic form of rank r, is reduced to canonical form
by the method of Kronecker, the number of positive terms is exactly the number of perma-
nences of sign and the number of negative terms is exactly the number of variations of
sign in the sequence po, py, pe, .-, P, Where a zero in the sequence can be counted either

as positive or negative but must be counted.
See Problems 11-13.

FACTORABLE QUADRATIC FORMS. Let X4X #0, with complex coefficients, be the given quad-

ratic form.

Suppose XA X factors so that
(i) XAX = (G + GoXo + <o+ + apxy) (bixg + boxg + -+ + bpay)
a; a;
If the factors are linearly independent, at least one matrix * “J1is non-singular. Let the
i 7
. . - a; a; ay ap
variables and their coefficients be renumbered so that becomes .
i bj by by
The non-singular transformation
Y1 = Mmx1 + Gxo t e + anxn

bixy + boxo + o0 + bpxy

il

Yo
¥s = Xg, ey yn = xn
transforms (i) into y,y, of rank 2. Thus, (i) is of rank 2.
If the factors are linearly dependent, at least one element a;# 0. Let the variables and
their coefficients be renumbered so that a; is a;. The non-singular transformation
Y1 = @xg ot Goxp + cer + apxy

Yo = o, ..., ¥Yp = g
transforms (i) into %yf of rank 1. Thus, (i) is of rank 1.
1

Conversely, if X4AX has rank 1 or 2 it may be reduced respectively by Theorem VI to yf or
y12 + y;, each of which may be written in the complex field as the product of two linear factors.
We have proved

XXIII. A quadratic form X4X #0 with complex coefficients is the product of two
linear factors if and only if its rank is r<2.
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SOLVED PROBLEMS

12 3 2
. .23 5 8
1. Reduce ¢=X4X=2X X to the form (17.3).
35 8 10
28 10 -8
From Example 1, Chapter 15,
12 3 211000 1 000 ! 1 000
I |
[4)1] = 2358}0100(: 0—-100;-—2 100 = [piP]
35 810f/0010|~|0 040! -10 401
2810 -810001 0 0001 —-1-110
1 -2 -10 -1
. 0 1 4 -1 . 2 _,2 2
Thus, the transformation X = PY = o 0 0 1 Y reduces g to the required form Yy~ Y, Ty,
0 0 1 0

1 22
2. Reduce ¢=X4X=X"12 4 8|X to the form (17.3).
28 4
We find
10 0} 1 00
(411 C o8 0} -4 11| = [DIP]
00-21 0-% %
1 -4 0
Thus, the transformation X=PY =|0 1 -%|Y reduces q to y12+8y22—2y§.
0 1 3%

3. Liagrange reduction.
(@) g = 20 + 5 + 10x3 — 24 + 8, x, + 127 2, + B, x, + 182,20, — By, — 16x,%,
= 20af + 2my (2, + g+ 20} + 53) + 1922 — 2447 + 18, %, — Bx,x, — 167,42,
= 20xf + 25, (22, + 35+ 2m,) + (22,y+ 3y + 20,17}

+ 5 + 1925 — 24x; + 18x,%, ~ Bxyx, — 16257, — 2(2xy + 31+ 21,2
= 203 + 22+ 32+ 2%)° — 31aE + 2my(x gt 4} + 22 — 3242 - 40,1,

= 20 + 2%, + 85+ 2%,)° — 3 (xp+ 2+ 4x,)2 + 4 (g —21,)°

Y1 = x1+ 2% + 3x3 + 2x4

: Yo = Xt x3t dx, 2
Y2 — + 42
Thus, the transformation vs = 24 reduces g to 2y; — 3y, 3
Y4 = X4

(b) For the quadratic form of Problem 2, we have

2 2 2 2
g = x + 4x1x2 + 4x1x3 + 4x2 + 16x2x3 + 4"3 = (x1+2x2+2x3) + 8x,x,

Since there is no term in x§ or x§ but a termin X,%x,, We use the non-singular transformation
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(i) X = 2q, X2 = 2o, xg = zo %t zg
to obtain
q = (2 +dz,+22,F + 822+ 82,25 = (z+42,422)%+8(2,+22)° = 225 = ¥f + 852 - 297
142 1 00 142||]1 00O 1 22
Now Y=|01%|Z and from (i), Z=|0 1 0|X; hence, Y=|0 1 3|[0 10|X=|0 % 3|X
001 0 ~-11 001 0 -11 0-11
1 -4 0
Thus, the non-singular transformation X =10 1 —3|Y effects the reduction.
0 1 3z

4. Using the result of Problem 2,

10 0/ 1 00
[4l11 £ jos 0!-4 11
00-21 0-% 3

and applying the transformations Hao(%v2), Ko($v2) and Ho(z v2). Ka(z \/2). we have

(al1] c 10 OE 1 00 c 10 OE 1 I\/_E) I\/E [ | ]
A1l £ Jos o] -4 11 01 o! -2 §vZ2 vz = [C¢
00-21}0—%%N00 15 0—4&\/5&\/5 v
1 1 22
Thus, the transformation X =QY =[0 .l 2 —u\/i reduices ¢ =X| 2 4 8]|X tothecanonical form
0 g T2 2 8 4

2 2 2
2 2

5. Prove: If a real quadratic form ¢ is carried by two non-singular transformations into two distinct
reduced forms

i 2 2 2 2 2 —_— e — 2
l) yl + y2 toeee t y;b - y¢+1 - y¢+2 }’T
and

(ii) y12+y22+---+y;— ;+1—y§+2_ e — 9’72
then p = ¢.

Suppose g>p. Let X = FY be the transformation which produces (i) and X = GY be the transfor-
mation which produces (ii). Then

biyxy + bioxo + e+ bipxn
1 borxy + bopxp + - t+ bopxp

Y = F X =
\
bpaxs + bpoxe + + bumen

and

c11% t cro%e t + cinxn
_1 co1x1 + cooxp t+ + conxy
Y = 67X = !
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respectively carry (i) and (ii) back into ¢. Thus,

2 2
(iii) (byy %y +bygot oo b by )"+ coe b (byy %y Fhpo Xyt et bynxy)
2 2
(bpty 1 %1 ¥ bpag o Xp oo Fbypyy 2™ — woe = (b x Fbppxyt e bk
2 ; 2
ey tepp@ptetog ) + oov 4 (cgy 2yt egphpt ot conn)
2 2
= (egr1a Xt cgagphot st igag n®)” = cr = (X toppXpt oz
Consider the r—g+p < r equations
by xy F byt et byyx, = 0 Cg+1,1%1 + Cge1,2% T o0t Setn*n T 0
bpy%y ¥ bypx, teretbyyx, = 0 Cora,1%1 ¥ Cqag ¥t t Cgr2n*n 0
bpr%y + bpoxy +vr et by = 0 Cri % Yooy s togpx =0

By Theorem IV, Chapter 10, they have a non-trivial solution, say (04, s, ...,0). When this solution is
substituted into (iii), we have

2 2
- <b¢+1,1a1 t b¢>+1,2a2 toeeet bﬁﬂ,nan) - ot = by Oy + b plp e e 4 Bplly)

2 2
(12 0y F Cyp0p + o oe F ey O™ 4 veees + (e @ + Cgalo * - oo + conly)

Clearly, this requires that each of the squared terms be zero. But then neither F nor G is non-singular,
contrary to the hypothesis. Thus, ¢<p. A repetition of the above argument under the assumption that
g<p will also lead to a contradiction. Hence ¢ = p.

. Prove: Every symmetric matrix 4 of rank r has at least one principal minor of order r different
from zero.

Since A is of rank r, it has at least one r-square minor which is different from zero. Suppose that it
stands in the rows numbered ii,is,....i,. Let these rows be moved above to become the first r rows of the
matrix and let the columns numbered i1.i2,...,i, be moved in front to be the first r columns.

Now the first r rows are linearly independent while all other rows are linear combinations of them. By
taking proper linear combinations of the first r rows and adding to the other rows, these last n-r rows can
be reduced to zero. Since A4 is symmetric, the same operations on the columns will reduce the last n-r
columns to zero. Hence, we now have

ll
Girly Pl Pigiy )
'
1
Qi i Qi i - Qi 4
toty  “lols oty ! 0
Ll
Ll
|
,
a. a; 4 a. 1
Tt Tyl Yrtr
'
'
; -
1
0 Ll 0
X
L .

in which a non-vanishing minor stands in the upper left hand corner of the matrix. Clearly, this is a princi-
pal minor of 4.

. Prove: A real symmetric matrix 4 of rank r is positive semi-definite if and only if there exists a
matrix C of rank r such that 4 = CC.

0
Since A4 is of rank r, its canonical form is N = [lg 0]. Then there exists a non-singular matrix B
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10.

such that 4 = BN,B. Since M/=N, = Nf we have A4 = BNyB = BN\M,B = B'N{-MB. Set C = N,B; then C is
of rank rand 4 = CC as required.

Conversely, let C be a real n-square matrix of rank r; then 4 = C'C is of rank s<r. Let its canonical
form be

No = diag(di, dp, ..., ds,0,0,....0)

where each d; is either +1 or —1. Then there exists a non-singular real matrix E such that E(CCE =N,.
Set CE =B = [bij]~ Since B'B = N,, we have

2 2 2 i

b‘l:l + biQ + .. 4+ bin = d’l;’ (i =1,2,...,8)
and

2 2 2 .

bjl + ij + e+ bjﬂ = 0, (] = s+1, 512, ...,n)

Clearly, each d;>0 and 4 is positive semi-definite.

. Prove: If 4 is positive definite, then every principal minor of 4 is positive.

Let g = X4AX. The principal minor of 4 obtained by deleting its ith row and column is the matrix 4; of
the quadratic form g, obtained from ¢ by setting x; = 0. Now every value of g; for non-trivial sets of val-
ues of its variables is also a value of ¢ and, hence, is positive. Thus, 4; is positive definite.

This argument may be repeated for the principal minors Aij» Aijk: ... obtained from A by deleting two,
three, ... rows and the same columns of 4.
By Theorem VI, A;>0, 435>0, ...; thus, every principal minor is positive.

. Prove: Any n-square non-singular matrix A4 = [a,;]-] can be rearranged by interchanges of certain

rows and the interchanges of corresponding columns so that not both p,_, and p,_, are zero.
Clearly, the theorem is true for 4 of order 1 and of order 2. Moreover, it is true for A of order n>2
when p,_, = ocm;é 0. Suppose 0O, =0; then either (a) some Q;; #0 or(b)all 0 =0.

Suppose (a) some Oj; # 0. After the ith row and the ith column have been moved to occupy the position
of the last row and the last column, the new matrix has p,_, = #£0.

Suppose (b) all 0;; = 0. Since | 4| # 0, at least one 0iy; # 0. Move the ith row into the (n-1)st position
and the ith column into the (n—1)st position. In the new matrix an—1,n = dn,n—l # 0. By (6.6), we have

%11 Fnean 0 %y 1m o2
= = ~%nan T PnaoPp
Opna O O 4n 0

and p,_, # 0.

Note that this also proves Theorem XV.

Renumber the variables so that ¢ = X4X = X~ X is regular.

[ - R =]
— W = O
- WN
L e e

Here po=1 p1=0, po=0, ps= -4, psa= —-3. Since py=p2=0, ps#0, we examine the matrix

00 2
B=10 3| of ps. The cofactor Boo =
2 4

0 2
1 2 4| # 0 the interchange of the second and third rows and of
3
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11. Reduce by Kronecker’s method ¢ = X’

12.

the second and third columns of 4 yields

= O N o
W AN
=W o
e

for which p, =1, p; =0, p, = -4, p; = —4, p, = —3. Here, x, has been renumbered as x3 and xs as xo.

W
D U= o
W NN W
B W O W

Here py=1, p, =1, p, = -3, pg = 20, p4 = -5 and ¢ is regular. The sequence of p’s presents one
permanence and three variations in sign; the reduced form will have one positive and three negative terms.

Since each p; # 0, repeated use of Theorem XIX yields the reduced form

2 2 2 2 2 2 2 2
PoP1Y1 * PiPo¥s t PoPg¥s * PgPa¥s = ¥, — 3y, — 60y, — 100y,
1231
, , ,]2 4 6 3
Reduce by Kronecker’s method ¢ = XA4X = X 369 o X.
13 25
Here 4 is of rank 3 and (gg # 0. An interchange of the last two rows and the last two columns carries
1
213 121 1210
243686 . 2430
Ainto B = 1352 in which € =2 4 3| #0. Since B is of rank 3, it can be reduced to 1350
1
36209 35 0000
1 21
Now q has been reduced to XCX =X’[2 4 3|X for which Po=1.p =1 p,=0, p;=—-1. The reduced
135
. . : . 11
form will contain two positive and one negative term. Since py =0 but v,,= 15 =4 # 0, the reduced
form is by (16.8)
2 2 2 _ 2 2
PoPrY1 * P1%eo¥s * YooPs¥s = yi + Y, - Y,

1-21 2
-2 4 1 -1

13. Reduce by Kronecker’s method ¢ = X 1 11 3 X.
2-12 1

Here p,=1, p,=1, p,=0, pg = -9, p, = 27, the reduced form will have two positive and two nega-

1 -21
tive terms. Consider the matrix B =| -2 4 1| of ps. Since [35=0 but Sas = —3 # 0 the reduced form
1

is by (16.8) and (16.9)

2 2 2 2 _ 2 2 2 2
PPy t 21832173 (y —¥3) + PaPa¥s = ¥ t* 54y, - Hdy, - 243y,
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14. Prove: For a set of real n-vectors Xy, X, ..., Xﬁ,
Xoo Xy Xoo X o0 Xio X
Xo Xy Xo-Xo - Xo-X,
Gl= 1 L e vee. | 20
Xo- Xy XXy oo Xy X,

the equality holding if and only if the set is linearly dependent.
4
(a) Suppose the vectorsﬁXi are linear;y independent and let X = [x1,%,....%5)" # 0. Then Z = 2% Xjxj #0
i=1
and 0<Z-Z = (L_:E1 X;x; )-(j=21 X;x) = X(XXHX = XX XX = XCX.

Since this quadratic form is positive definite, | G| > 0.

(b) Suppose the vectors X; are linearly dependent. Then there exist scalars k4, ko, ...,kﬁ. not all zero,

b
such that &= X k;X; = 0 and, hence, such that
i=1

X;o& = kaXjeXo o+ koXjXp 4 e ¥ kpXjeX, =0, (G=12,....p

Thus the system of homogeneous equations
Xj-Xam + Xj-Kowg + o + XjXpmy = 0 (= LZep)
has a non-trivial solution x;=k;, (i = 1,2,...,p), and |G| =o0.
We have proved that |G| >0. To prove the converse of (b), we need only to assume |G| =0 and
reverse the steps of (b) to obtain X;-£ =0, (j =1,2,...,p) where ¢= é k; X;. Thus, j:% kiXj &=

£-&=0, £=0, and the given vectors X; are linearly dependent.

SUPPLEMENTARY PROBLEMS

15. Write the following quadratic forms in matrix notation:
(a) xf + 4x,x, + 3x§ (b) 2xf - 6x, %, + xg () x12 - 2x§ - 3x§ +dx,x, + 6x, x5 — 8x,%5

19 2-30 1 2 3
Ans. (a) X’[2 3])( by X'} -3 0 0]|X (¢) X'|2 -2 —-4lX
0 01 3 -4 -3

2 -3 1
16. Write out in full the quadratic form in x1,%0,x¢ whose matrixis | -3 2 4].
1 4 -5

2 2 2
Ans. 2x; — 6x,x, + 2x,x5 + 2x; + Bxyxg — 5x5

17. Reduce by the method of Problem 1 and by Lagrange’s Reduction:

1 2 4 1 i ; _; 0o 1 2 0 0 1
@ X2 6 -2|X (b)X’1331X () X1 1 -1|X (dy X|o 1 -2}x
-2 18 2-1 0 1 -2
4 -2 1-31-3 3
Ans. (a) y2+ 22 - 482 (b) y7 - 2+ 4% (©) y7 - y3+8y; @) v -2 *ys

Hint. In (¢) and (d) use xq = zg, X0 = 21, X3 = 29.
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18.

19.

20.

21.

22.

23.
24.

25.

26.

27.
28.
29.

30.

31.

1

(a) Show that X’[(l) :]X = X’[z

i:l X but the matrices have different ranks.

(b) Show that the symmetric matrix of a quadratic form is unique.
Show that over the real field x7+x2— 4x2+ dx,%, and 9x7+ 2x2+ 2x3+62, %, — 6x, x, — 8x,%, are equivalent.

Prove: A real symmetric matrix is positive (negative) definite if and only if it is congruent over the real
field to I (=I).

Show that X’AX of Problem 12 is reduced to X'CX by X = R;X\'J, where R = Kg4 K41(—5)K40(1). Then prove
Theorem XIX.

(a) Show that if two real quadratic forms in the same variables are positive definite, so also is their sum.

(b) Show that if ¢4 is a positive definite form in x4,%2,..., Xs and g¢o is a positive definite form in X541, X542,
.. %,, then ¢ = g1+go is a positive definite form in X1, %2, -, Kyl

Prove: If C is any real non-singular matrix, then CC is positive definite.
Hint: Consider X7X = YCICY.

Prove: Every positive definite matrix 4 can be written as 4 = CC. (Problems 23 and 24 complete the proof
of Theorem X.)  Hint: Consider D’AD =1.

Prove: If a real symmetric matrix 4 is positive definite, so algo is Aﬁ for p any positive integer.

Prove: If 4 is a real positive definite symmetric matrix and if B and C are such that B’AB=I and 4=CC,
then CB is orthogonal.

Prove: Every principal minor of a positive semi-definite matrix 4 is equal to or greater than zero.
2

Show that ax; — 2bx,x, + cxj is positive definite if and only if a>0 and |4 | = ac— £ > 0.

Verify the stated effect of the transformation in each of Theorems XX and XXI.

By Kronecker’'s reduction, after renumbering the variables when necessary, transform each of the following
into a canonical form.

[ 1 -1 0] F;sij [ 1 0 -2] [0 o 1]
(@ X|-1 2 -1|x (c)X’lllzx (&) X| 00 1]Xx (&) X’lo 1 -2|x
—1 -2 1 3 -2
0 2 5291 [ -2 | i 3_}
. 1 231 - 020 1
[ 4 -4 2 ( [ 1 2 -1 !_
. 2 -46 2 , 2 4 31
by X’| -4 3 -3(X @ X0 olx x| 24 2|x NP o IR B
2-3 1 -1 2 3]
- 1 231 = 111 1]
Hint: In (g), renumber the variables to obtain (e) and also as in Problem 17(d).
— - — — . 2 2 2 _ - _ _ . 2 2 2
dns. (a) py=p, =p,=py=1; Y1t o, (@ P =p =1 @y = =L py= =1, 5~y 4y,
(b) 47 - 16y7 + 167 (f) Po=py= 1. Oy = —4, p = —16; y2 + 1287 — 1287
() 7§ — 92+ 492 - 32 (&) See (o).
(d) yZ - 8y2 () 42 - 16y2+ 1672 + 1292

- 2 2 2 2
Show that ¢ = x; — 6x; — 6x; — 3x, — %%, - %, %, + 22, %, + 13x, %, — 119\¢2x4 +9x %, can be factored.



Chapter 18

Hermitian Forms

THE FORM DEFINED by
(18.1) Bo= XHX =

R hij;c',,;xj, h'L] = h]t

n
J=1

IMs

%

where H is Hermitian and the components of X are in the field of complex numbers, is called an
Hermitian form. The rank of H is called the rank of the form. If the rank is r<n, the form is
called singular; otherwise, non-singular.

If H and X are real, (18.1) is a real quadratic form; hence, we shall find that the theorems
here are analogous to those of Chapter 17 and their proofs require only minor changes from
those of that chapter.

Since H is Hermitian, every h;; is real and every h;;%;x; is real. Moreover, for the pair of
cross-products h,;jxixj and hﬁ x5%;,

h'l,j;‘bx] + h]t;]x’b = h”;%xj + ht]xt;]
is real. Thus,

1. The values of an Hermitian form are real.

The non-singular linear transformation X = BY carries the Hermitian form (18.1) into an-
other Hermitian form

(18.2) (BYYH(BYY = Y(B'HBY

Two Hermitian forms in the same variables x; are called equivalent if and only if there exists
a non-singular linear transformation X = BY which, together with Y =X, carries one of the
forms into the other. Since B’HB and H are conjunctive, we have

II. The rank of an Hermitian form is invariant under a non-singular transformation of
the variables.
and

III. Two Hermitian forms are equivalent if and only if their matrices are conjunctive.

REDUCTION TO CANONICAL FORM. An Hermitian form (18.1) of rank r can be reduced to diagonal
form

(18.3) kvyryr + koyays + -0 + kWY, ki #0 and real
by a non-singular linear transformation X = BY. From (18.2) the matrix B is a product of ele-

mentary column matrices while B’ is the product in reverse order of the conjugate elementary
row matrices.

By a further linear transformation, (18.3) can be reduced to the canonical form [see (15.6)]

(18.4) ?121 + }_222 + e + E,pZﬁ - ;¢)+1Z¢>+1 — evr Tm 2,2,

146
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of index p and signature p—(r—p). Here, also, p depends upon the given form and not upon
the transformation which reduces that form to (18.4).

IV. Two Hemmitian forms each in the same n variables are equivalent if and only if
they have the same rank and the same index or the same rank and the same signature.

DEFINITE AND SEMI-DEFINITE FORMS. A non-singular Hermitian form 4 = X’HX in n variables
is called positive definite if its rank and index are equal to n. Thus, a positive definite Her-
mitian form can be reduced to y1y1 +ypyo + -+ + Yy, and for any non-trivial set of values of
the x’s, £>0.

A singular Hermitian form & = )?’HX is called positive semi-definite if its rank and index
are equal, i.e., r = p<n. Thus, a positive semi-definite Hermitian form can be reduced to
Yi¥1 +Ye¥2 + -+ + %y, , r<n, and for any non-trivial set of values of the x's, k>0,

The matrix # of an Hermitian form X'HX is called positive definite or positive semi-
definite according as the form is positive definite or positive semi-definite.

V. An Hermitian form is positive definite if and only if there exists a non-singular
matrix C such that H = C’C.

VL. If H is positive definite, every principal minor of # is positive, and conversely.

VII. If H is positive semi-definite, every principal minor of ¥ is non-negative, and

conversely.
SOLVED PROBLEM
1 142 2-3;
1. Reduce X’|1-—2; 5 —4—2i|X ‘to canonical form (18.4).

2+3i —4+2 13

From Problem 7, Chapter 15,

1 142 2-3; 1 100 10 0 1 0 0
1
1-20 5 —4-2 ; 01 0[HC |01 0! 2/1/10 1/4/T0  i/4/10
1 ~
2+3i -4+2i 13 1 00 1 00 -1 (-4-4ap)/\/T0 i//T0 1/yT0

Thus, the non-singular linear transformation

1 2///10 (-4+4i)/1/T0
X = BY = |o 1A/10 -i/\/10 Y
0 ~i/y/10 1/y/10

reduces the given Hermitian form to 71y, + Yoye — ¥a3¥s-
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SUPPLEMENTARY PROBLEMS

2. Reduce each of the following to canonical form.

- 1 1-3 2-3
-, 1 1+2; -,
(a) X . X (¢) X|1+3i 1 2+3i | X
1-2¢ 2
B | 2+3i 2-3i 4
_ - 1 1-¢ 3-2
=| 0 ¢ -,
(b) XL o X d) X'J1+: 0 2-i1 | X
-

[ 3+2i 2+i 4

Hint: For (b), first multiply the second row of H by i and add to the first row.

1 (=1-2i)/3 — _
Ans. (a) X =[ \/—]Y; Yy — yoye

0 1/y/3
@ x=1]|" _i]%“ 5.
—\/;2- i 1 VYY1 — Yoye
(1 (-1+3i)/3 -1
() X=1|o 1/3 -11Y; ny - yore
0 1

[y

1 (-1+i)/y/2 (-1+3i)/4/10
@ X=]0 1//2  (=3-20/\/I0|Y: By - Yoye — yays

| 0 0 2/A/10

3. Obtain the linear transformation X = BY which followed by Y =X carries (a) of Problem 2 into (5).

e, X:L[l -1-20/V3|[1 4],
vz lo 1/\/3 i1

1 1+ -1 1 1+ 1+2i
4. Show that X’} 1-i 6 —3+i |X is positive definite and X’| 1-i 3 5 | X is positive semi-definite.
-1 -3-i 11 1-2; 5 10

5. Prove Theorems V-VIIL.

6. Obtain for Hermitian forms theorems analogous to Theorems XIX-XXI, Chapter 17, for quadratic forms.

0 X1 Xo x

n
X1 ki1 hio .. Ban n n
7. Prove: ;2 th hQQ P hgn = - ti ]E:l 7}1431’96] where 771'] is the cofactor of h%] in H= lhtjl'
En hnl th hnn

Hint: Use (4.3).



Chapter 19

The Characteristic Equation of a Matrix

THE PROBLEM. Let Y=A4X, where 4 = [ai]-], (i,j = 1,2,...,n), be a linear transformation over F.
In general, the {ransformation carries a vector X = [x1,%s,...,x,] into a vector ¥ = L7 T 7 i
whose only -connection with X is through the transformation. We shall investigate here the
possibility of certain vectors X being carried by the transformation into AX, where ) is either
a scalar of F or of some field F of which F is a subfield.

Any vector X which by the transformation is carried into AX, that is, any vector X for which
(19.1) AX = XX

is called an invariant vector under the transformation.

THE CHARACTERISTIC EQUATION. From (19.1), we obtain

)\—011 =15 ...... —Qqp X1
— A—agy ... -

(19.2) M -4X = AI-AHX = for AT G2 i Bl I
—anq —0ano ..., A— Ann x.n

A"‘aj_l —q10 ...l —an
(19.3) (M=d] = | T AT e i
—ap —Qpo e A—anp

The expansion of this determinant yields a polynomial &) of degree n in A which is known as
the characteristic polynomial of the transformation or of the matrix 4. The equation ¢(A) =0
is called the characteristic equation of A and its roots ), Ao, ..., A, are called the character-
istic roots of 4. If A=X;is a characteristic root, then (19.2) has non-trivial solutions which are
the components of invariant or characteristic vectors associated with (corresponding to) that root.

Characteristic roots are also known as latent roots and eigenvalues; characteristic vectors
are called latent vectors and eigenvectors.

2 21
Example 1. Determine the characteristic roots and associated invariant vectors, given 4 ={1 3 1].
A-2 -2 -1 122
The characteristic equation is | -1 A-3 —1] = X 72 +1IA~5 = 0 and the
-1 -2 A=2

characteristic roots are A =5, ,=1, Ag=1.

149
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When A =Aqy=5, (19.2)becomes

3 -2 -1 |x 01 -1|]| x
-1 2 -1]|=x0]| =0 or 10 -1|}jx2} =0
-1 -2 3] {xs 00 O] xs
3 -2 -1 01 -1
since | -1 2 -1] isrow equivalentto |1 0 -1
-1 -2 3 00 O

A solution is given by x1 = xo = xg = 1; hence, associated with the characteristic root
A =5 is the one-dimensional vector space spanned by the vector [1.1,1]'. Every vector
{k.k k1 of this space is an invariant vector of 4.

When A= A,=1, (19.2) becomes
-1 -2 -1 x1
-1 -2 -1 X0 =0 or x1 + 2x0 + %3 = 0
—1 —2 —1 xg
Two linearly independent solutions are (2,-1,0) and (1,0,-1). Thus, associated with

the characteristic root A =1 is the two-dimensional vector space spanned by X; = [2,-1,0]
and X, =[1,0,-1]". Every vector AX;+kX, = [2h+k,—h,~k]" is an invariant vector of 4.

See Problems 1-2.

GENERAL THEOREMS. In Problem 3, we prove a special case (k=3) of

I. If A, Ag, ..., Ap are distinct characteristic roots of a matrix A and if X3, Xo, ..., X},
are non-zero invariant vectors associated respectively with these roots, the X's are line-
arly independent.

In Problem 4, we prove a special case (n=3) of

II. The kth derivative of & (A) = |Al—A4|, where 4 is n-square, with respect to Ais
k! times the sum of the principal minors of order n—k of the characteristic matrix when £<n,
is n! when k=n, and is 0 when £>n.

As a consequence of TheoremIl, we have

Il If A; is an r-fold characteristic root of an n-square matrix 4, the rank of A;/—4
is not less than n—r and the dimension of the associated invariant vector space is not
greater than r. See Problem 5.
In particular

IIr. If \; is a simple characteristic root of an n-square matrix 4, the rank of A;/—4
is n—1 and the dimension of the associated invariant vector space is 1.

221
Example 2. For the matrix 4 =| 1 3 1| of Ex.1, the characteristic equation is (M) = ()\—5)()\—1)2 =
12 2

0. The invariant vector [1,1,1]” associated with the characteristic root A=5 and the linearly
independent invariant vectors [2,-1,0]” and [1,0,-1] associated with the multiple root A=1
are a linearly independent set (see TheoremI).

The invariant vector space associated with the simple characteristic root A=5 is of
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dimension 1. The invariant vector space associated with the characteristic root A=1, of
multiplicity 2, is of dimension 2 (see Theorems I and ).
See also Problem 6.

Since any principal minor of A" is equal to the corresponding principal minor of 4, we have
by (19.4) of Problem 1,

IV. The characteristic roots of 4 and A" are the same.
Since any principal minor of A is the conjugate of the corresponding principal minor of 4,
we have
V. The characteristic roots of 4 and of /T’are the conjugates of the characteristic

roots of 4.

By comparing characteristic equations, we have

VI If Aq, Ao, ..., A, are the characteristic roots of an n-square matrix 4 and if % is a
scalar, then kAy, kAo, ..., kA, are the characteristic roots of k4.
VIL. If Ay, Ao, ..., A, are the characteristic roots of an n-square matrix A and if kis a

scalar, then A—k, Ap,—k, ..., A,—k are the characteristic roots of 4 —%I.

In Problem 7, we prove

VIIL If o is a characteristic root of a non-singular matrix 4, then [41/0 is a character-
istic root of adj 4.

SOLVED PROBLEMS

1. If 4 is n-square, show that

(19.4) AN = AI=A] = AN+ s AN s A2 g Spoah + (=17 |4]

where s, , (m=1,2,...,n—1) is (—=1)™ times the sum of all the m-square principal minors of 4.

We rewrite [Al — 4| in the form

)\—011 O—a12 ...... 0—a1n
0—(191 )\—GQQ ...... 0 —Qon
O—flnl 0—-(1n2 ...... )\— ann

and, each element being a binomial, suppose that the determinant has been expressed as the sum of 27 de-
terminants in accordance with Theorem VIII, Chapter 3. One of these determinants has \ as diagonal elé-
ments and zeroes elsewhere; its value is A”. Another is free of A; its value is (—1)"[A|. The remaining
determinants have m columns, (m = 1,2, ...,n — 1), of —4 and n ~m columns each of which contains just one
non-zero element \.

Consider one of these determinants and suppose that its columns numbered iy, io, ..., iy are columns
of —4.

After an even number of interchanges (count them) of adjacent rows and of adjacent columns, the de-
terminant becomes
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(11:1‘1"1 a'il.’ioz ail’i’m j
. L S
(11‘2‘1'1 01’2'72 PN 01‘2‘1”% |
................ i 0
. . . |
(1" Simis  Pimdo Fomim | B " Af'l-ia ----- in NG
_____________ o __ = DMy i
: A0 0
Y ;0 A 0
Gipda %y do Yyl | e
I 0 0 A
where |47 ol i an m-square principal minor of 4. Now
.1, - .,1/m
2R YRR 4
= ()" 2|4 m
S (-1 % o, ooy
-~1)...(n~-m+
as (i1.ig, ....i, ) MUNS through the O = n(n 1 )2 ("m m+1) different combinations of 1,2,....,n taken m at a
time.
1 -4 -1 —4
. 2 0 5 —4
2. Use (19.4) of Problem 1 to expand [A] —4], given 4 = 11 -2 3
—1 4 —1 6
We have s = 1+40-2+6 = 5
1 -4 1 -1 1 —4| |o 5 0 -4 -2 3
So = + + + +
2 0 -1 -2 -1 6 1 -2 4 6 -1 6
= 8§-3+2~-5+16-9 = 9
1 -4 -1 1 -4 -4 1 -1 -4 0 5 -4
sg = 2 0 5| + 2 0 -4y + |-1 -2 3] + |1 -2 3
-1 1 -2 -1 4 6 -1 -1 6 4 -1 6
= -3+16-8+2 = 1
4] = 2

Then |[M-4| = A*-5 % +9A% —7A+2.

3. Let A, Xa; Ao Xz Mg X5 be distinct characteristic roots and associated invariant vectors of 4.
Show that X,, X,, X5 are linearly independent.

Assume the contrary. that is, assume that there exist scalars ay, ap, ag . not all zero, such that
(i) a1X1 + GQXQ + a3X3 = 0
Multiply (i) by 4 and recall that 4X; = )‘11 X, ; we have
(ii) a1 AXy + axAXo + agAXs = atA1 X5 + ag)\QXQ + ag)\sXs = 0
Multiply (ii) by 4 and obtain
(1) a3 X + apA3Xp + aghiXs = O
Now (i), (ii), (iil) may be written as
1 1
(iv) ‘ M Az AsleeXo| = 0
PRI | PS4

—

a1 Xy
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1 1 1
A1 Ao As
A% A

By Problem 5, Chapter 3, B = # 0; hence, B™' exists.

THE CHARACTERISTIC EQUATION OF A MATRIX

have [a1X4 apXp. a5Xs]” = 0. But this requires a1 = ao = ag = 0, contrary to the hypothesis.

Thus, Xy, Xo, X5 are linearly independent.

A-~ayq —a12 —-a13
4. From ¢\ = |A - A| ~ap1 A-asp —asa we obtain
~agi —aze A-agg
1 0 0 A-a1q1 —ayp —a13 A-
XO) = ~ac1 A-—agy —agg| + 0 1 0 +
—as1 —age A-ags —ag1 —ags A-—ags
- A-agg = az3 )\—011 —-ai13 )\-'011 — a1
—ag2 )\—ﬂsa —a31 A-ass — 801 )\—022
= the sum of the principal minors of Al - 4 of order two
’ 1 0 A.—GQQ — a0 1 0
N = ?
—ag2 A—ags 0 1 —ag1 A—ags
+ 1 0 A—all -Q192
—51 A-agp 0 1
= 2{A-a11) + (A=app) + (A —aga)}
= 2! times the sum of the principal minors of A\ —A4 of order one
¢//l(}\) - 31

Also ¢ = ¢My = .. = 0.

5. Prove:

—a12

A-ags

a11

—a21

A —a11

—a13

153

Multiplying (iv) by B™", we

—a13
— a3

If A, is an r-fold characteristic root of an n-square matrix A, the rank of A; I —A is not less

than n —r and the dimension of the associated invariant vector space is not greater than r.

(r-1)

Since A; is an r-fold root of $(A) =0, B(A) = d'N) = ¢ A =

Yy =0 and 6 # 0. Now

qS( )()x) is r' times the sum of the principal minors of order n-r of )\ I A4; hence not every principal minor

can vamsh and A;/ —A4 is of rank at least n-r.
i.e., its null-space, is of dimension at most r.

By (11.2), the assoclated invariant vector space of /\ -4,

6. For the matrix of Problem 2, find the characteristic roots and the associated invariant vector spaces.

The characteristic roots are 1,1, 1, 2.

-

1 4 1 4 [1 01 o
-2 2 -5 4 0 0 0 0

=2 I = ~ is of ;

For A=2: A -4 1 -1 4 -3 0 0 3 —o|i8° rank 3
L 1 -4 1 -4 _0 1 0 1

sion 1. The associated invariant vector space is that spanned by [2, 3, -2, -3]".

[0 4 1 ﬂ 0 0 5 -4

. -2 1 -5 4] _|o-1 1 -2
For A=1: A -4 = 1 -1 3 -3 1 0 2 -1
[ 1 -4 1 -5] o 00 o

sion 1. The associated invariant vector space is that spanned by [3, 6, —4, —5]".

its null-space is of dimen-

is of rank 3; its null-space is of dimen-
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7. Prove: If & is a non-zero characteristic root of the non-singular n-square matrix 4, then |4{/a is
a characteristic root of adj 4.

By Problem 1,
(i)

where Si =12, ..

a4 50" g @+ (<14l = 0

n-1)is (—1)’; times the sum of all i-square principal minors of 4, and

wl-adia] = p® + S + 0+ S, u + (-1 adj 4]
where S5, (j =1,2,....,n-1) is (-1)7 times the sum of the j-square principal minors of adj 4.
By (6.4) and the definitions of s; and 5;. Sp= (-1 Sp_qr So = (-1"Alsy 0 .o, Sy = (-1 4] 2 sy,

and |adj 4] = [4|™*; then

\/J,I-—a(ﬁ Al — (—1)”{(—1)”#" + Sn_lpn—l + sn—Q\A|/J’n_2 + o+ SQ|AIn_3/-L2 + SllA]n—QM + |A|n—-1}
and
AN el —adi 4] = (~DML + sa(ey + e+ sy (T P Al =
14} 4] 14}
o I T L+t Lin-1 4 1y (4]}
f(T) = (_ ) Sq o S?’L"l(a) o
and by (i)

oc”f(%) = (Mo 4 s g @+ (=D Al = o

Hence, |4|/ is a characteristic root of adj 4.

. Prove: The characteristic equation of an orthoganal matrix P is a reciprocal equation.

We have

G\ = |M-P| = |APIP'—P| =

1 ’ 7yl n,.1
— =7 - E =I--P| = % =
| PM)\I P +\ I)\ | A q.’v()\)

SUPPLEMENTARY PROBLEMS

. For the following matrices, determine the characteristic roots and a basis of each of the associated invariant
vector spaces.

[1 0 -1 1 2 2 2 —8 —12 2 1 1] 1 -1 -1
@ |1 2 1 @ | o021 @ |1 4 4 @ |1 21 @y |t -1 o
2 2 3 -1 2 2 0 0 1] ~ o 0 1 1 0 -1
(1 1 -2 [0 1 [_3 —9 —12] 2 2 0] 2@ 0 i
@ |-1 2 1 @ lo o 1 hHhltr 3 4 @ |2 2 0 Gy | o 14 o
[ 01 -1 1 -3 3 [0 0 1 0 0 1] | i 0 2-i
3 2 2 -4 5 6 -10 7 -1-1~6ﬂ
2 3 2 -1 -5 -4 9 -8 1 -2 -3 0
k !
® 1 e 1.3 2 6 -4 e
2 2 2 -1 3 -3 7 -5 -1 -1 -5 3]
Ans. (@) 1,01, -1,0); 2 [2.-1,-2}; 3, [1,-1,-2V
by -1, [1.0,11; 2, [1,3.11; 1, [3.2.1F
(o) 1,[1,1,-11; 2 [2,1,0];

(@ 1, 1,1, 1]
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10.

| 11.
12.
13.
14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

(e) 2, [2,-1,0]"; o0, [4-1,01; 1 [4,0 -1}

(H o, [3-1,01"; 1,12 -4, 1}

() 1. (1,0, <11 [0,1, -1]"; 3, [1,1.0

() 0, [1,-1,0"; 1,[0,0,1]"; 4, [1,1,0)

() -1, [0,1, 11 i [1+i1.1); —i, [1-i.1,1)

(H 2, 01,011 144 [0.1,0]"; 2-2¢ (1,0, -1)

(k) 1,[1,0,-1,0), [1,-1,0,0}"; 2 [-2.4,1,2]; 3. [0,3, 1, 2]
(O 1,01,2,3,2]; -1,[-3,0,1,4]

(m 0,[2,1,0,1); 1, [3.0,1.4]; -1,[3,01,2]

’,

Prove: If X is a unit vector and if AX = AX then X4X =\.

Prove: The characteristic roots of a diagonal matrix are the elements of its diagonal and the associated in-
variant vectors are the elementary vectors Ei'

Prove Theorems I and VL

Prove Theorem VII.
Hint. If |A/—4=A-ADA-X2)...(A=)) then |[A+k)]—A|=\+k~Ay) A+E =A9) ... (A+k =) ).

Prove: The characteristic roots of the direct sum diag(44, 4o, .... 4;) are the characteristic roots of A4, 4o,

. As.

I
Prove: If 4 and N = [g

0
] are n-square and r <n, show that ¥4 and AN have the same characteristic
equation.

0

Prove: If the n-square matrix 4 is of rank r, then at least n —r of its characteristic roots are zero.

Prove: If 4 and B are n-square and 4 is non-singular, then 4" 'B and B4~ have the same characteristic
roots.

For 4 and B of Problem 17, show that B and 4~ "BA have the same characteristic roots.
Let 4 be an n-square matrix. Write |[A1-47%] = l—)\A'l(XlI—A)\ and conclude that 1/A1,1/Ao, ..., 1/\ are
the characteristic roots of 4~ 1.

Prove: The characteristic roots of an orthogonal matrix P are of absolute value 1.

Hint. If )\i, Xi are a characteristic root and associated invariant vector of P, then Xi X; = (PXi)’(PXi) =
Prove: If )\1; # t1 is a characteristic root and Xi is the associated invariant vector of an orthogonal matrix
P, then X X; = 0.

Prove: The characteristic roots of a unitary matrix are of absolute value 1.

Obtain, using Theorem II,

b0y = (-1)"|4]

(;S’(O) = (=1)"times the sum of the principal minors of order n — 1 of 4
dJ(T)(O) = (—1)n_rr! times the sum of the principal minors of order n —r of 4
¢(n)(0) = !

24. Substitute from Problem 23 into

SN = GO + FOA + 5 N + .+ oy
to obtain (19.4).



Chapter 20

Similarity

TWO n-SQUARE MATRICES 4 and B over F are called similar over F if there exists a non-singular
matrix R over F such that

(20.1) B = R'4R
2 2 1
Example 1. The matrices 4 = |1 3 1| of Example 1, Chapter 19, and
1 2 2
733221 1 33 5 14 13
B = R™MR = |-1 1 of 1 3 1] 1 43/ = o 1 o
-1 0 1} j1 2 2] 1 3 4 0 0 1

are similar.

The characteristic equation (A—5)(A—1)2 =0 of B is also the characteristic equationof 4.

An invariant vector of B associated with A =5 is Y, =[1,0,0]" and it is readily shown
that X, = RY; =[1, 1,1] is an invariant vector of 4 associated with the same characteristic
root A =5. The reader will show that Y, = [7,—2,0]" and Y3 =[17,—38, —2]" are a pair of line-
arly independent invariant vectors of B associated with A =1 while X, = RY, and X; = RY,
are a pair of linearly independent invariant vectors of 4 associated with the same root A = 1.

Example 1 illustrates the following theorems:
I. Two similar matrices have the same characteristic roots.

For a proof, see Problem 1.

II. If Y is an invariant vector of B = R"*4AR corresponding to the characteristic root
A; of B, then X = RY is an invariant vector of 4 corresponding to the same characteristic

root A; of A.
For a proof, see Problem 2.

DIAGONAL MATRICES. The characteristic roots of a diagonal matrix D = diag(ay, ay, ..., @) are
simply the diagonal elements.
A diagonal matrix always has n linearly independent invariant vectors. The elementary

vectors E; are such a set since DE; = a;E;, (i=1,2,...,n).

As a consequence, we have (see Problems 3 and 4 for proofs)
III. Any n-squate matrix 4, similar to a diagonal matrix, has n linearly independent
invariant vectors.

IV. If an n-square matrix 4 has n linearly independent invariant vectors, it is similar

to a diagonal matrix.
See Problem 5.

In Problem 6, we prove

V. Over a field F an n-square matrix A is similar to a diagonal matrix if and only if
M -A factors completely in F and the multiplicity of each A, is equal to the dimension of
the null-space of AiI—A.

156
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Not every n-square matrix is similar to a diagonal matrix. The matrix of Problem 6, Chap-
ter 19, is an example. There, corresponding to the triple root A = 1, the null-space of A\] — 4
is of dimension 1.

We can prove, however,

VI. Every n-square matrix 4 is similar to a triangular matrix whose diagonal elements
are the characteristic roots of 4.

See Problems 7-8.
As special cases, we have

VII. If A is any real n-square matrix with real characteristic roots, there exists an
orthogonal matrix P such that P 'AP = P'AP is triangular and has as diagonal elements
the characteristic roots of 4.

See Problems 9-10.

VIII. If A is any n-square matrix with complex elements or a real n-square matrix with

complex characteristic roots, there exists a unitary matrix U such that U AU = U4U is
triangular and has as diagonal elements the characteristic roots of 4.

See Problem 11.
The matrices 4 and P"AP of Theorem VI are called orthogonally similar.

The matrices A and U *AU of Theorem VIH are called unitarily similar.

'DIAGONABLE MATRICES. A matrix A which is similar to a diagonal matrix is called diagonable.
Theorem IV is basic to the study of certain types of diagonable matrices in the next chapter.

SOLVED PROBLEMS

1. Prove: Two similar matrices have the same characteristic roots.
Let 4 and B = R™Y4R be the similar matrices; then

) M-B = M-R MR = R™™WR-RMR = R\ _AR
and

IAI-B| = |RY.\A-4|-|R| = |AT-4]

Thus, 4 and B have the same characteristic equation and the same characteristic roots.

2. Prove: If Y is an invariant vector of B = R™*AR corresponding to the characteristic root A;, then
X = RY is an invariant vector of 4 corresponding to the same characteristic root Aq of A.

By hypothesis, BY =)\iY and RB = AR; then
AX = ARY = RBY = R)\iY = )\,LRY = /\iX

and X is an invariant vector of 4 corresponding to the characteristic root A

3. Prove: Any matrix 4 which is similar to a diagonal matrix has n linearly independent invariant
vectors.

Let R™4AR = diag(by, by, ..., by) = B. Now the elementary vectors E,, E, ..., E,, are invariant vectors
of B. Then, by Theorem II, the vectors X ; = RE. are invariant vectors of 4. Smce R is non-singular, its
column vectors are linearly independent.
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4. Prove: If an n-square matrix 4 has n linearly independent invariant vectors, it is similar to a
diagonal matrix.

Let the n linearly independent invariant vectors Xy, Xo, ..., X, be associated with the respective charac-
teristic roots Aq. Ag, ..., Ay, S0 that AX; =X;X;, (1=1,2,...,n). Let R= [X4, X0, ..., X, 1 then

AR = [AX1. AXo. ... AX,] = aXi XX, o ApX, ]

Ar 0O 0 ... O
0 A

= [Xl‘ XQ, PN X'ﬂ] o 2 0 ..... 0 = R diag ()\1. )\,2 ..... )\,n)
0 0 0 Ay

Hence, R™M4R = diag(\. Ao c A

5. A set of linearly independent invariant vectors of the matrix 4 of Example 1, Chapter 19, is
X, =01, 1,1, X, =1[2,-1,0l", Xs;=1[1,0-1}

2 T 1 2 1
Take R = Xy, X0, Xal = |1 —1 0}; then R7'= g {1 —2 1} and
1 0 -1 1 2 -3
1 2 22 [ 2 I 5 0 0
RMR = 411 -2 1||1 31 —1 = o 1 o
1 2 =3/t 22t o -1 00 1

a diagonal matrix.

6. Prove: Over a field F an n-square matrix A is similar to a diagonal matrix if and only if Al-4

factors completely in F and the multiplicity of each A; is equal to the dimension of the null-space

First, suppose that R AR = diag(Aq, Ao ...Ay) = B and that exactly & of these characteristic

roots are equal to A;. Then A;/ - B has exactly k& zeroes in its diagonal and, hence, is of rank n —k; its

nuil-space is then of dimension n—(n-k) =k. But A;/ -4 = R\ -B) R™Y; thus, A;l -4 has the same
rank n —k and nullity 4 as has A;I - B.

Conversely, let Aq, Ay, ...,Ag be the distinct characteristic roots of 4 with respective multiplicities

r.To, ....Tg, Where r+rot...+rg=n. Denote by Vﬁ, Ver’ V,r the asscciated invariant vector spaces.
Take Xi1. Xio ~-.X1‘,r1: as a basis of the invariant vector space Vyi. (i=1,2,...,s). Suppose that there
exist scalars ajj not all zero, such that
(i) (a11X11 + a10Xqo + o + a1y Xo7) + (a21Xp1 + asoXoo + ... + agry Xory)
+ ...+ (alesl + aSQXSQ + ...+ aerstrs) = 0
Now each vector Y; = aj1 Xjq1tajoXjot+ ... + a“’iXi'ri) =0, ({i=1,2,...,s), for otherwise, it is an

invariant vector and by Theorem I their totality is linearly independent. But this contradicts (i); thus, the
X's constitute a basis of V,, and 4 is similar to a diagonal matrix by Theorem IV.

7. Prove: Every n-square matrix A is similar to a triangular matrix whose diagonal elements are the
characteristic roots of 4.

Let the characteristic roots of 4 be Ay, Ao, ..., A, and let X; be an invariant vector of 4 corresponding to
the characteristic root A4. Take X, as the first column of a non-singular matrix ¢J, whose remaining columns
may be any whatever such that |Qi| #0. The first column of AQq is A4X; = A1 X, and the first column of
07140, is Q'l'l)xle. But this, being the first column of QIl)\lQl' is [A1.0,....0]". Thus,
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_ B
M 05140, - [M 1]
0 Al

where 4, is of order n — 1.

Since |AM - Q7740Q;] = (A=A A — 44|, and Q7 40; and 4 have the same characteristic roots, it
follows that the characteristic roots of Ay are Ao, Ag, ....A,. If n =2, 41 = [A;] and the theorem is proved
with Q = 0j.

Otherwise, let X, be an invariant vector of 4, corresponding to the characteristic root Ao. Take X, as
the first column of a non-singular matrix Qo whose remaining columns may be any whatever such that |0, # 0.
Then

. B
(if) 051 410Qp = I:OQ Az]

I, o0
where 4, is of order n ~2. If n =3, A, = [Ag], and the theorem is proved with Q = Q- [01 Q:l.
>

Otherwise, we repeat the procedure and, after n — 1 steps at most, obtain
I 0|7 0 I 0
(i) 0 = Q-|" ? Rk
0 QQ 0 QS 0 Qn_i

such that Q"lAQ is triangular and has as diagonal elements the characteristic roots of 4.

8. Find a non-singular matrix Q such that Q"'4Q is triangular, given

4 0 5 —4

Here |AM —A4| = (A\>-1)(A2~4) and the characteristic roots are 1, -1, 2, —2. Take [5,5.-1,3], an
invariant vector corresponding to the characteristic root 1 as the first column of a non-singular matrix Q;
whose remaining columns are elementary vectors, say

5 0 00
s 100
Q= 1010
3 001
Then
1000 5 -1 8 -9 -
_1_1_—5500 _q -1_0 0 -15 20 ~ 1 By
01 5/ 1050 and QA0 = Sl 4 1p 18| T o 4
-3 00 5 0 3 1 7 -
(4 0 0
A characteristic root of 4, is —1 and an associated invariant vectoris [4,0, -1]". Take Qo= | 0 1 0{;
-1 0 1
then
1 0 0 -20 -15 20 -1 B
-1 1 -1 _ 1 _ 2
Q" = 10 4 0 and Qo A1Qr = == 0 -48 64 =
4 20 0 A,
1 0 4 0 -11 48

8 0
A characteristic root of A, is 2 and an associated invariant vector is [8,11}". Take Qg = [ l:l ; then

4] 10 . {2 s
Qs” = 8_[_11 8:| and Q3 4203 = [0 _9
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Now
0 00 [ 32 0 o o
I, 0 I, 0] 4 00 Q_l__lw‘—4040 0 0
Q 01002'003‘4080 ~ 160 4 0 20 O
3 -1 11 1 ~180 40 -220 160
1 1 -7 -9/5
1 0 -1 5 1
nd A =
& Q40 0 0 2 2/5
0 0 0 -2

9. If A is any real n-square matrix with real characteristic roots then there exists an orthogonal

10.

matrix P such that P~ *AP is triangular and has as diagonal elements the characteristic roots of 4.

Let Aq, Ao, - )\ be the characteristic roots of A. Since the roots are real the associated invariant
vectors will also be real As in Problem 7, let @, be formed having an invariant vector corresponding to Ay
as first column. Using the Gram-Schmidt process, obtain from @, an orthogonal matrix P, whosefirst column

is proportional to that of Q;. Then
- Ay B
PllAPi _ 1 1
0 A

where A, is of order n ~ 1 and has Ap, As, ..., A, as characteristic roots.

Next. form Qo having as first column an invariant vector of 4, corresponding to the root A, and, using
the Gram-Schmidt process, obtain an orthogonal matrix P,. Then

Ay By
Pyl AP, =
0 A,
After sufficient repetitions, build the orthogonal matrix
I 0 I 0
p = p. |t U Bt
0 P, 0 P,_,
for which P_lA‘lD is triangular with the characteristic roots of 4 as diagonal elements.

Find an orthogonal matrix P such that

2
P'4P = P°' 1
1

N W N

1

1}P

2

is triangular and has the characteristic roots of 4 as diagonal elements

From Example 1, Chapter 19, the characteristic roots are 5,1, 1 and an invariant vector corresponding
to A=1is [1,0,-1]"

1 00
We take Q4 = 010 and, using the Gram-Schmidt process, obtain
-1 0 1
1//2 0 1A/2
P, = 0 1 0
-1/v2 0 1/4/2

an orthogonal matrix whose first column is proportional to [1,0, -1}
We find
1/v2 o -1//2||2 2 1] | 12 0 1/V2
PI'4P, = 0 1 0 131 o 1 o0 =
1 2 2

1//2 0 1/\/2 —1//2 0 1/42

"o © =
Do
o
S
w<‘o
oo
1l
re =1
>~ B
| R
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11.

12.

, 1 0
Now A; has A =1 a characteristic root and [1, —\/5] as associated invariant vector. From Q, = [~\/§ ]

1]
1/\/§ 2/\/6] Then

we obtain by the Gram-Schmidt process the orthogonal matrix P, = [

-2/\/8 1/v3]
o 1NV2 ~1/7/3 1/\/6
P = 1.[01 P] = 0 13 2/\/6
E -1/VZ -1/\/3 148
10 0
is orthogonal and P7'4P = |0 1 —/2
00 5

Find a unitary matrix U such that U AU is triangular and has as diagonal elements the charac-
teristic roots of 4, given

545 —1+i -6-4i
A = —4—-6; 2—-2 6 +4s
243 —1+4i —-3-2
The characteristic equation of 4 is )\()\2 +(-4-A+5—-i) = 0 and the characteristic roots are

1 00
0,1-i,3+2i. For A=0, take [1,-1,1]" as associated invariant vector and form Q= ]-1 10

1 01
The Gram-Schmidt process produces the unitary matrix

V3 1/4/6 -1/\/2
Uy = |-1/vy3 2/\/6 0
1V/3 1//6  1/4/2
Now
0 -2+v2(1-i) —(26+24i)/\/6
vitau, = o 1-i (2+30)//3
0 0 3+2i

so that, for this choice of @4, the required matrix U = U,.

Find an orthogonal matrix P such that P AP is triangular and has as diagonal elements the char-
acteristic roots of 4, given

3 -1 1
4 = |-1 5 -1
1 -1 3

The characteristic roots are 2, 3,6 and the associated invariant vectors may be taken as [1,0, -17.

[1,1,1), [1,-2,1]" respectively. Now these three vectors are both linearly independent and mutually
orthogonal. Taking

V2 13 1/\/6
P = 0 1/v/3  -2/\/6
-1/V2 13 146

we find P 1AP = diag(2, 3, 6). This suggests the more thorough study of the real symmetric matrix made
in the next chapter.
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13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

SUPPLEMENTARY PROBLEMS

Find an orthogonal matrix P such that P—lAP is triangular and has as diagonal elements the characteristic
roots of 4 for each of the matrices 4 of Problem 9 (a), (), (¢), (d), Chapter 19.

[T 13yE 23 [ 1/vV3 V2 -1/4/6]
Ans. (@) |-1A/2  1/3y2 2/3] . @ | 1/4/3 o 2/\/6
| 0 -4/3V2 1/3 L—l/\/g 1/V2  1A/6
[1vE 0 —1yE (13 -1/VZ 146
(b) 0 1 o . (dy [1//3 0 216
LVZ 0 12 1NV3  1A2 -1/\V6

Explain why the matrices (a) and (b) of Problem 13 are similar to a diagonal matrix while (¢) and (d) are
not. Examine the matrices (a) —(m) of Problem 9, Chapter 19 and determine those which are similar to a
diagonal matrix having the characteristic roots as diagonal elements.

For each of the matrices 4 of Problem 9 (i), (), Chapter 19, find a unitary matrix U such that U 14U is tri-
angular and has as diagonal elements the characteristic roots of 4.

0 1V/2 —(1+i)/2 1/A/2 0 -1/3/2
dns. () | 142 (1-i/2y2 z . @ | o 1 0
—1/V/2 (1-i)/242 3 V2 0 142

Prove: If 4 is real and symmetric and P is orthogonal, then P " 1AP is real and symmetric.
Make the necessary modification of Problem 9 to prove Theorem VHI.

Let B; and C; be similar matrices for (i = 1,2,...,m). Show that
B = diag(B4, By, ..., By) and C = diag(Cq, Co, ..., Cp)
are similar. Hint. Suppose Cj = R;i B; R; and form R = diag(Rq, Ry, ..., Ry).

Let B =diag(B,,B,) and C =diag(B,, By). Write I = diag(/1.15), where the orders of I, and I, are those
0 11

of By and B, respectively, and define R = [I 0] . Show that R™BR = C to prove B and C are similar.
2

Extend the result of Problem 19 to B = diag(By, By, ..., By) and C any matrix obtained by rearranging the
Bi along the diagonal.

If 4 and B are n-square, then AB and BA have the same characteristic roots.
Hint. Let PAQ =N; then PABP™* = NQ *BP " and Q"*BAQ = Q"*BP™YN. See Problem 15, Chapter 19

If A1, Ap, ..., A4 are non-singular and of the same order, show that A1Ag.. . Ag, AoAs... AgAq, As... AsA14,,
. have the same characteristic equation.

Let Q—lAQ = B where B is triangular and has as diagonal elements the characteristic roots A Ao, .l )\n
of 4.
(a) Show that Q_iAk() is triangular and has as diagonal elements the kth powers of the characteristic
roots of 4.
LEN k
(b) Show that 3 A; = trace 4" .
i=1
Show that similarity is an equivalence relation.

2 21 2 1 -1
Show that 1 3 1] and 0 2 -1 have the same characteristic roots but are not similar.
1 2 2 -3 -2 3
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Similarity to a Diagonal Matrix

REAL SYMMETRIC MATRICES. The study of real symmetric matrices and Hermitian matrices may
be combined but we shall treat them separately here. For real symmetric matrices, we have:

I. The characteristic roots of a real symmetric matrix are all real.
See Problem 1.

II. The invariant vectors associated with distinct characteristic roots of a real sym-
mefric matrix are mutually orthogonal.
See Problem 2.

When 4 is real and symmetric, each Bi of Problem 9, Chapter 20, is 0; hence,

III. If 4 is a real n-square symmetric matrix with characteristic roots A, Agy v, Ay,
then there exists a real orthogonal matrix P such that P'AP = P"4P - diag (A, Ag, ..os Ay).

Theorem IIf implies

Iv. If )‘i is a characteristic root of multiplicity T of a real symmetric matrix, then
there is associated with A; an invariant space of dimension ;.

In terms of a real quadratic form, Theorem III becomes

V. Every real quadratic form ¢ = X'4X can be reduced by an orthogonal transformation
X = BY to a canonical form

(21.1) Ay o+ Aoys + ... + )\Tyf
where r is the rank of 4 and Aq, Ao, ..., A, are its non-zero characteristic roots.

Thus, the rank of ¢ is the number of non-zero characteristic roots of 4 while the index is
the number of positive characteristic roots or, by Descartes Rule of signs, the number of varia-
tions of sign in |A]—~4]| = 0.

VI. A real symmetric matrix is positive definite if and only if all of its characteristic
roots are positive.

ORTHOGONAL SIMILARITY. If P is an orthogonal matrix and B = P"*AP, then B is said to be or-
thogonally similar to 4. Since P_lzP', B is also orthogonally congruent and orthogonally
equivalent to A. Theorem Il may be restated as

VII. Every real symmetric matrix 4 is orthogonally similar to a diagonal matrix whose
diagonal elements are the characteristic roots of A.

See Problem 3.

Let the characteristic roots of the real symmetric matrix 4 be arranged so that A, 2 Ao 2
... ZA,. Then diag(Aq, A, ..., A,) is a unique diagonal matrix similar to A. The totality of
such diagonal matrices constitutes a canonical set for real symmetric matrices under orthogonal
similarity. We have
VIII. Two real symmetric matrices are orthogonally similar if and only if they have
the same characteristic roots, that is, if and only if they are similar.
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PAIRS OF REAL QUADRATIC FORMS. In Problem 4; we prove

IX. If X'AX and X'BX are real quadratic forms in (x4, %, ..., x,) and if X'BX is posi-
tive definite, there exists a real non-singular linear transformation X = CY which carries
X'AX into

Aiyi + Aoys + oo+ Apyp
and X'BX into

2 2 2
y1+y2+...+yn

where A; are the roots of |[AB—A4]| =0.
See also Problems 4-5.

HERMITIAN MATRICES. Paralleling the theorems for real symmetric matrices, we have

X. The characteristic roots of an Hermitian matrix are real.
See Problem 7.

XI. The invariant vectors associated with distinct characteristic roots of an Hermitian
matrix are mutually orthogonal.

XII. If H is an n-square Hermitian matrix with characteristic roots Ay, Ao, ..., A, there
exists a unitary matrix U such that U'HU = UTHU = diag(\4, Ao, ..., Ap). The matrix H
is called unitarily similar to U™ HU.

XIII. If )\i is a characteristic root of multiplicity r; of the Hermitian matrix H, then
there is associated with )‘i an invariant space of dimension T

Let the characteristic roots of the Hermitian matrix # be arranged so that Ay €A, < ... <Ay,

Then diag(Ay, Ag, ..., A,) is a unique diagbnal matrix similar to . The totality of such diago-
nal matrices constitutes a canonical set for Hermitian matrices under unitary similarity. There
follows

XIV. T'wo Hermitian matrices are unitarily similar if and only if they have the same
characteristic roots, that is, if and only if they are similar.

NORMAL MATRICES. An n-square matrix 4 is called normal if A4’ = A'A. Normal matrices include
diagonal, real symmetric, real skew-symmetric, orthogonal, Hermitian, skew-Hermitian, and
unitary matrices.

Let 4 be a normal matrix and U be a unitary matrix, and write B = U'AU. Then B'=U'A'U
and B'B=U'A'U-U'AU = U'A'AU = U'AA'U = U'AU .U’A'U = BB'. Thus,
XV. If 4 is a normal matrix and U is a unitary matrix, then B = U'AU isa normal matrix.
In Problem 8, we prove .

XVI. If X, is an invariant vector corresponding to the characteristic root A; of a nor-
mal matrix A, then X; is also an invariant vector of 4’ corresponding to the characteristic
root A;.

In Problem 9, we prove

XVII. A square matrix 4 is unitarily similar to a diagonal matrix if and only if 4 is
normal.
As a consequence, we have

XVII. If A is normal, the invariant vectors corresponding to distinct characteristic
roots are orthogonal.

See Problem 10.
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XIX. If A; is a characteristic root of multiplicity r; of a normal matrix A, the associ-
ated invariant vector space has dimension r;.

XX. Two normal matrices are unitarily similar if and only if they have the same char-
acteristic roots, that is, if and only if they are similar.

SOLVED PROBLEMS

1. Prove: The characteristic roots of an n-square real symmetric matrix 4 are all real.
Suppose that h+ik is a complex characteristic root of 4. Consider
B = {h+iby—Ah—ityI -4} = (Rl -4 + K°I

which is real and singular since (k+ik)I —4 is singular. There exists a non-zero real vector X such that
BX =0 and, hence,

X'BX = XG®I-A2X +kX'X = X@Gl-AYGRI-HX +E2X'X = 0

The vector (kI —A4) X is real; hence, {(hl —A)X} {(h1-A)X} 2 0. Also, X'X>0. Thus, k =0 and
there are no complex roots.

2. Prove: The invariant vectors associated with distinct characteristic roots of a real symmetric
matrix A are mutually orthogonal.

Let X; and X, be invariant vectors associated respectively with the distinct characteristic roots A, and
Ao of A. Then

AXy = M Xy and  AXo = AyXo, also XpAXy = M XoX, and  XidXo = Ao X1 X,
Taking transposes
X1AXo = M X1X, and  XpAXy = AoXo X,

Then A,X1X, = AoXiX, and, since Ay # Ao, XiXo=0. Thus, X; and X, are orthogonal.

3. Find an orthogonal matrix P such that P 4P is diagonal and has as diagonal elements the char-
acteristic roots of A, given

7T -2 1
A = -2 10 -2
1 -2 7
The characteristic equation is
A=T 2 -1
2 A-10 2 = A - 2427+ 180L - 432 = 0

-1 2 A=T

and the characteristic roots are 6, 6, 12.

-1 2 -1}ix1
For A =6, we have 2 -4 21 |x] =0 or x -2x+x3 =0 and choose as associated in-
-1 2 =1} |xs

variant vectors the mutually orthogonal pair X; ={1,0, —11" and X, =[1,1,1)°. When A = 12, we take X5 =
[1, -2.1)° as associated invariant vector.
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Using the nomalized form of these vectors as columns of P, we have

IN2 IN3  IAE
P = 0 I3 -2A/6
-1A2 1IA3  1A6

It is left as an exetrcise to show that P"1AP = diag (6, 6, 12).

. Prove: If X’AX and X'BX are real quadratic forms in (x;, %o, ..., %,,) and if X'BX is positive defi-
nite, there exists a real non-singular linear transformation X = CY which carries X' 4X into

M1yi +Xoys + ... + Ay, and X'BX into yi +y2 + ... +y5, where A1, A, ..., A, are the roots of
IAB-4] =o0.

By Theorem VII there exists an orthogonal transformation X = GV which carries X'BX into
(i) V(G'BGYV = pavi + fovi + ... + fyvl

where (g, fho, ..., My are the characteristic roots (all positive) of B.

Let H =diag(1A/ 1. 1A/ o, ... 1A/ LLy). Then V = HW carries (i) into
(i) WH'G'BCGHYW = w?+ w2+ ... + w

Now for the real quadratic form W'(H'G'AGH)W there exists an orthogonal transformation W = KY which
carries it into

1 Pegl ~1 _ 2 o 2
Y(KHGAGHKYY = A yZ2+ Xy + ...+ Ay,
where Ay, Ao, .... A, are the characteristic roots of H'G'AGH. Thus, there exists a real non-singular trans-
formation X = CY = GHKY which carries X'4X into Alyf + AQ'yg + o+ )\nyﬁ and X'BX into
Y'K'H'G'BGHKYY = Y'KTIKY = 52+952+ .. 442

Since for all values of A,

K'H'G'\B-4)GHK = MK'H'G'BGHK - K'H'G'AGHK

diag A\ A, ..., A) — diag(A1, Az .. Ap)
diagA =A1, A=Ao ..., A=AL)

it follows that A1, Ao, ..., A, are the roots of |[AB -4} =0

. From Problem 3, the linear transformation

C T s e |five o 0
X = (GHHW = o 13 -2/#/ell o 1/ o |W
-1V2 1MN3 Vel o 0 1/2V3
[ 1/2v3 1/3VZ 1/6V32
= 0 1/3vV2 -1/3V2 |W

[-1/2V3 1/3V2  1/6V2

7 -2 1

carries g = X'BX = X'|-2 10 -2|X into W'IV.
1 -2 1

The same transformation carries

3 -1 1 1/3 0 0
XAax = X' |-1 5 -1|X into W lo % olW
1 -1 3 0 0 3
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Since this is a diagonal matrix, the transformation W = KY of Problem 4 is the identity transformation W =1IY.
Thus, the real linear transformation X = CY = (GH)Y carries the positive definite quadratic form X'BX
into y? +yZ +yZ and the quadratic form X'AX into ;Tyf = L2

2y2 2% - It is left as an excersise to show that
INB-A| =36(3A —1)(2A - 1),

. Prove: Every non-singular real matrix A can be written as A = CP where C is positive definite
symmetric and P is orthogonal.

Since 4 is non-singular, AA' is positive definite symmetric by Theorem X, Chapter 17. Then there
exists an orthogonal matrix @ such that Q" 14A4'Q = diag(k,y, ko, ....ky) = B with each k; >0. Define
By = diag(\/k—i, Vko ....Vk,) and C = (QB,0~!. Now C is positive definite symmetric and

C? = QB1Q7'QBQ° ' = QBfQ"1 = QBQ™' = 44’

Define P = C"*A. Then PP' = ¢ '44'C™'- ¢ 'c?c™* =1 and P is orthogonal. Thus 4 = CP with C
positive definite symmetric and P is orthogonal as required.

. Prove: The characteristic roots of an Hermitian matrix are real.

Let )\ be a characteristic root of the Hermitian matrix #. Then there exists a non-zero vector X such
that HX; =A;X;. Now X HX; = )\ X X ; is real and different from zero and so also is the conjugate trans-
pose X% HX; = =A X X;. Thus, = )\ and A; is real.

. Prove: If X is an invariant vector corresponding to a characteristic root )\ of a normal matrix 4,
then Xt is an invariant vector of A’ corresponding to the characteristic root /\

Since A is normal,

N - =AY

1}

A -AYAI-4") = AR - AA' - XA + 44
= MM A —xd+ A4 = Al AI-4)
so that A/ — 4 is normal. By hypothesis, BX; = (A\;I-A4)X; = 0; then
(BX;)'(BX;) - X,B'-BX;, = X;B-B'X, = (BX)'(B'X) =0 and B'X; = A;l-4"%; = 0

Thus, Xi is an invariant vector of Z' corresponding to the characteristic root X i

. Prove: An n-square matrix A is unitarily similar to a diagonal matrix if and only if 4 is normal.

Suppose A is normal. By Theorem VHIE, Chapter 20, there exists a unitary matrix U such that

A bio big  eeenen. by n-1 bin
0 Ao bog eeeeennn bo m_1 bon
U'AU = = B
0 0 0 ... Ana bn-in
_0 0 0 ... 0 A, i

_ By Theorem XV, B is normal so that B'B = B_E'. Now the element in the first row and first column of
B'B is Aq\; while the corresponding element of BB' is

)tl}zl + bJ_QEJ_Q + b1sg13 + ...+ bin-l;:m

Since these elements are equal and since each bij Elj > 0, we conclude that each byj = 0. Continuing
with the corresponding elements in the second row and second column, ..., we conclude that every b;; of B

if
is zero. Thus, B =diag(Aq,As, ..., Ay). Conversely, let A be diagonal; then A is normal.
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10.

11.

12.
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Prove: If A is normal, the invariant vectors comresponding to distinct characteristic roots are
orthogonal.

Let Ay, X; and A, Xo be distinct characteristic roots and associated invariant vectors of A. Then
AXy =X X1, AX;=AoX, and, by Problem8, A'Xy=A1Xy, 4'Xp=XpXo. Now XpAXy=AXoX, and,
taking the conjugate transpose, X_{Z'XQ=X1 X{XQ. But XiZ'X2=X25(_1XQ. Thus, X121X2=X2X{X2
and, since Ay # Ao, X1Xo=0 as required.

Consider the conic xf - 12x,%, — 4x2= 40 or
. ' ! 1 -
(i) X'AX = X X = 40
-6 -
referred to rectangular coordinate axes OX, and OX,.
The characteristic equation of 4 is

A-1 6

= (A- 8) = 0
6 \+a (A-5)(A+8)

[A1-4] = '

For the characteristic roots Ay =5 and A, = -8, take [3, —2]" and [2. 3]° respectively as associated

3A/13 2Af13

:l whose columns are the two

2A/13 3A/13

vectors after normalization. The transformation X = PY reduces (i) to

A3V 2T 1 6] sA/TI3 2A/13 N
Y Y = Y Y = 5y2-8y2Z = 40
213 3A/13) -6 -a)l-2A/13 3A/T3 0 -

The conic is an hyperbola.

invariant vectors. Now form the orthogonal matrix P = [

Aside from the procedure, this is the familiar rotation of axes in plane analytic geometry to effect the
elimination of the cross-product term in the equation of a conic. Note that by Theorem VIHI the result is
known as soon as the characteristic roots are found.

One problem of solid analytic geometry is that of reducing, by translation and rotation of axes,
the equation of a quadric surface to simplest form. The main tasks are to locate the center and
to determine the principal directions, i.e., the directions of the axes after rotation. Without at-
tempting to justify the steps, we show here the role of two matrices in such a reduction of the
equation of a central quadric.

Consider the surface 3x° + 2xy + 2xz+4yz —2x - 14y + 22 — 9 = 0 and the symmetric matrices

3 1 1 -1
3 1 1
1 0 2 -7
A = J1 0 2 and B =
1 2 0 1
1 2 0
-1 -7 1 -9

formed respectively from the terms of degree two and from all the terms.

The characteristic equation of 4 is
(A -4] = -1 A 2| = o0

The characteristic roots and associated unit invariant vectors are :

VST [ N RS | WAl [ S SR S (P U - Y
1 v1 [\/5\/5\/.5] 2 V2 [\/E\/B\/E 3 3

S
S,
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13.

14.

Using only the elementary row transformations H i(k) and H; (k) where j # 4,

3 11 -1 0 0 1 -4
B=31: 102—7m0100:[01]
B, 1 2 0 1 1 00 1 Dy
171 -9 00 0 -4
3x+ y+ z-1=20
Considering B, as the augmented matrix of the system of equations x +2z -7 =0 we find

x+ 2y +1=0

from D, the solution x = -1, y =0, z =4 or C(-1,0,4). From D,, we have d = —4.

n

The rank of A is 3 and the rank of B is 4; the quadric has as center C(-1,0,4). The required reduced
equation is

MXTHNY? 4 ngZ" v d = XPvav® o227 -4 = o0
The equations of translation are x==x'-1, y =y/, z = 2/ +4.

The principal directions are wvq, vo.vs. Denote by E the inverse of [ul, vo, va]- The equations of the
rotation of axes to the principal directions are

x! I3 -1A3 -1A/3
y! =[xy zl.E = [xvY zZ} |2//6 1A6 1A/6
z! 0 -2 1AN2

SUPPLEMENTARY PROBLEMS

For each of the following real symmetric matrices 4, find an orthogonal matrix P such that P~ 24P is diago-
nal and has as diagonal elements the characteristic roots of 4.

2 0 -1 2 0 1 2 -4 2 3 2 2 4 -1 1
@ |02 of, ®» o 3 0f. () }-¢4 2 <2, @ {2 2 o, (& |-t 4 -1
-1 0 2 1 0 2 2 -2 -1 2 0 4 1 -1 4
IN 2 0 1A2 N2 IAE 1N3 2/3 1/3  2/3
Ans.  (a) 0 1 0 (b) 0 -2A/6 1A/3 1. (¢) [-2/3 2/3 1/3
IA2 0 —1/\/7 -1A/2  1IAf6 1IA/3 1/3 2/3 -2/3

2/3 N6  IA2  1A3

(@ | -2/3 2/3 1/3], ey |2A/6 0 -1A/3

-1/3 -2/3 2/3 NG -1AZ 13

Find a linear transformation which reduces X'BX to yZ+ y§+y§ and X'AX to Alyf+)t2y§_ + /\gyg, where
A are the roots of |AB —4| =0, given

7 -2 1 2 0 1 7T -4 —4 2 2 2

(@ 4 = |-2 10 -2, B=]o 3 o h 4 =|-4 1 -8, B=1]2 5 a
1 -2 7 1 0 2 -4 -8 1 2 4 5
INZ  1/3y/2 1/3 2/3  2/3 1/3y/10

Ans.  (a) 0 -2/3y2 1/3|. (& |-2/3  1/3 2/3/10

-1A/2  1/3/2 1/3 1/3  ~2/3 2/3\/10
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15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

23.

26.

Prove Theorem IV.
Hint. If P AP = diagh1, i ooy A1s Ayygs Apyo oo Ay, then PTTQ\1—A)P = diag(0, 0, ..., 0,
A=Ay A=Ay oo Ar—Ay) is of rank n—r.

Modify the proof in Problem 2 to prove Theorem XI.
Prove Theorems XII, XIII, and XIX.

Identify each locus:

(a) 20x2 — 24xy %0 + 27x2 = 369, (¢) 108x2 - 312x;x + 1722 = 900,
(b 3x12+ 2x1x2+3x§ = 4, (d) x12+ 2x1x2+x22 = 8

Let A be real and skew-symmetric. Prove:

(a) Each characteristic root of 4 is either zero or a pure imaginary.
(b) I+A4 is non-singular, I -4 is non-singular.

(¢) B=U+AyY*( -A4) is orthogonal. (See Problem 35, Chapter 13.)

Prove: If 4 is normal and non-singular so also is A7t
Prove: If 4 is normal, then 4 is similar to 4’

Prove: A square matrix 4 is normal if and only if it can be expressed as H +:K, where H and K are commu-
tative Hermitian matrices.

If 4 is n-square with characteristic roots Ai, Ao, ..., A, then 4 is normal if and only if the characteristic
roots of A4 are Ay A1, Aoha oo Aghy,.

Hint. Write U YAU =T = [tij]' where U is unitary and T is triangular. Now tr(TT’) = tr(AZ') requires
tij =0 fori#j.

Prove: If A is non-singular, then AZ' is positive definite Hermitian. Restate the theorem when 4 is real
and non-singular.

Prove: If 4 and B are n-square and normal and if 4 and B' commute, then AB and BA are normal.

Let the characteristic function of the n-square matrix 4 be

FN) = A=ADTTA-XD2. A=AY"S
and suppose there exists a non-singular matrix £ such that
(D PP = diagalpy. Aolpy oo Aslp)

Define by Bi’ (i =1,2,...,s) the n-square matrix diag(o0,0, ..., O,IT_, 0,...,0) obtained by replacing )\i by 1
2

and )\J-, (j #), by 0 in the right member of (1) and define
E; = PBPT. (i=1,2..9

Show that
(@ P74P = A By +ApBy+ .. +A B
By A = MEy+AE+ ..  + A ES
(¢) Every E; is idempotent.
(d) EiEj =0 for i#j.
() Ey+Eo+...+E; =1
(f) The rank of E; is the multiplicity of the characteristic oot Aj-
(@ MJI-DE;=0, (=12, ...5)
(h) If p(x) is any polynomial in x, then p(4) = pADE; + pAYEs + ... + pA O ES.

Hint, Establish A2 = A2Ey + AZE, + .. + A2E, A" = NJEq + M5B + ... + ASEg, ...
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(i) Each E; is a polynomial in 4.
Hint. Define f(A) = A-A)A-A)...(AA-Ay) and f;(A) = fA/A-Ay), (=1,2,....s). Then
fi ) = fi()\i)Ei'
(/) A matrix B commutes with A4 if and only if it commutes with every Ei'
Hint. If B commutes with 4 it commutes with every polynomial in 4.
(k) 1If A is normal, then each E; is Hermitian.
(1) 1If A is non-singular, then
AT = NEy + NFEx + .+ XNTE
(m) If A is positive definite Hermitian, then
H = 472 = VX, Ey + VAgEy + ... + VAL Eg
is positive definite Hermitian.

(r) Equation (b) is called the spectral decomposition of 4. Show that it is unique.

27. (a) Obtain the spectral decomposition

24 -20 10 4/9 -4/9  2/9 5/9 4/9 -2/9
A = -20 24 -10 = 49 |-4/9 4/9 -2/91 + 4] 4/9 5/9 2/9
10 -10 9 2/9 -2/9 1/9 -2/9 2/9 8/9
29 20 -10
- 1
b) Obtain A4~ * = —| 20 10
(b) tain 196 2 29
-10 10 44

38/9 -20/9  10/9
(c) Obtain 42 = |-20/0 38/ -10/9
10/9 -10/9  23/9

28. Prove: If A is normal and commutes with B, then 4' and B commute.
Hint. Use Problem 26 ().

29. Prove: If A4 is non-singular then there exists a unitary matrix U and a positive definite Hermitian matrix #
such that A= HU.
Hint. Define H by HZ = A4’ and U =H"'4.

30. Prove: If 4 is non-singular, then 4 is normal if and only if # and U of Problem 29 commute.

31. Prove: The square matrix 4 is similar to a diagonal matrix if and only if there exists a positive definite
Hermitian matrix H such that H~14H is normal.

32. Prove: A real symmetric (Hermitian) matrix is idempotent if and only if its characteristic roots are 0’s and 1’s.
33. Prove: If 4 is real symmetric (Hermitian) and idempotent, then Ty = trAd.

34. Let 4 be normal, B =/+4 be non-singular, and C = B~ 'R’.
Prove: (a) 4 and (B'Y! commute, (b) C is unitary.

35. Prove: If H is Hermitian, then (I+iH)“1(I-iH) is unitary.

36. If 4 is n-square, the set of numbers X 4X where X is a unit vector is called the field of values of 4. Prove:
(a) The characteristic roots of 4 are in its field of values.

(b) Every diagonal element of 4 and every diagonal element of U_lAU, where U is unitary, is in the field
of values of 4.

(c¢) If A is real symmetric (Hermitian), every element in its field of values is real.

(d) If A is real symmetric (Hermitian), its field of values is the set of reals Ay S\ < A, where A4 is the
least and An is the greatest characteristic root of 4.



Chapter 22

Polynomials Over a Field

POLYNOMIAL DOMAIN OVER F. Let A denote an abstract symbol (indeterminate) which is assumed
to be commutative with itself and with the elements of a field F. The expression

7n-1

(22.1) FOY = agk 4 apead 4 e+ ah 4 a0k

where the a; are in F is called a polynomial in ) over F.

If every a; =0, (22.1) is called the zero polynomial and we write fty=0. If a, #0,
(22.1) is said to be of degree n and a,, is called its leading coefficient. The polynomial foy =
ao)f) = ag # 0 is said to be of degree zero; the degree of the zero polynomial is not defined.

If a, =1 in (22.1), the polynomial is called menic.

Two polynomials in A which contain, apart from terms with zero coefficients, the same
terms are said to be equal.

The totality of polynomials (22.1) is called a polynomial domain F[\] over F.

SUM AND PRODUCT. Regarding the individual polynomials of F[A] as elements of a number sys-
tem, the polynomial domain has most but not all of the properties of a field. For example

fOY+ g\ = g\ + [ and fY g\ = g\ fA)

I f(A) is of degree m and g()\) is of degree n,

(i) f()+ g\ 1is of degree m when m>n, of degree at most m when m=n, and of degree n
when m<n.

@iy f(A)y-g\) is of degree m+n.
If f(\)#0 while f(A)-g(A\) = 0, then g(A)=0.
If g(A\)#0 and h(N) <g(A) = k) - g(A), then R\ = B .

QUOTIENTS. In Problem1, we prove

I If f(A) and g(\) # 0 are polynomials in F[A], then there exist unique polynomials
k() and r(\) in F[A], where r()\) is either the zero polynomial or is of degree less than
that of g(A), such that

(22.2) fon = AN gAY + (V)

Here, r(\) is called the remainder in the division of f(A) by g(A). If r(d) =0, g(\) is said
to divide f(\) while g(\) and A()) are called factors of f()).

172
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Let f(A) = A(A)-g(\). When g(\) is of degree zero, that is, when g(\)= ¢, a constant,
the factorization is called trivial. A non-constant polynomial over F is called irreducible over
F if its only factorization is trivial.

Example 1. Over the rational field X’ —3 is irreducible; over the real field it is factorable as (A/3A—/3).

Over the real field (and hence over the rational field) A>+4 is irreducible; over the complex
field it is factorable as (A+2i)A—2i).

THE REMAINDER THEOREM. Let f(\) be any polynomial and g(A\) = A - a. Then (22.2) becomes
(22.3) fy = MM -(A-a) + 1
where r is free of \. By (22.3), f(a) = r, and we have

H. When f(X) is divided by A—e until a remainder free of A\ is obtained, that remainder
is f(a).

III. A polynomial f(\) has A - ¢ as a factor if and only if f(a) = 0.

GREATEST COMMON DIVISOR. If 4()\) divides both f(x) and g()), it is called a common divisor of
f(\) and g(\).

A polynomial d(\) is called the greatest common divisor of f(A) and g(A) if
(i) d)\) is monic,
(ii) d(X) is a common divisor of f(A) and g()),
(iif) every common divisor of f(A) and g(\) is a divisor of d()).
In Problem 2, we prove
IV. If f(X) and g(A) are polynomials in F[A], not both the zero polynomial, they have
a unique greatest common divisor d(\) and there exist polynomials h(\) and k() in FIA]

such that
(22.4) d(n)

BN+ B - g
See also Problem 3.
When the only common divisors of f()) and g(\) are constants, their greatest common divisor
is d(\) = 1.
Example 2. The greatest common divisor of f(A) = (& +4)(\2+3\+ 5) and g(\) = ()\2—1)()\2 +3A+5) is
A +3\+5. and (22.4) is

X 43N+ 5 = %f(A) - %gm

We have also (1 - )\2) -fy) + (AQ +4)-g(A) = 0. This illustrates

V. If the greatest common divisor of f()\) of degree n>0 and g(A) of degree m>0 is
not 1, there exist non-zero polynomials a()\) of degree <m and b(\) of degree <n such that
aMy-f) + by-ghy = 0

and conversely. See Problem 4.

RELATIVELY PRIME POLYNOMIALS. Two polynomials are called relatively prime if their greatest
common divisor is 1.
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VL. If g(A) is irreducible in F[A] and f(A) is any polynomial of F[A], then either g\)
divides f(A) or g(A) is relatively prime to f(\).

VIL If g(A) is irreducible but divides f(A)-A()), it divides at least one of f(\) and A()).
VIHI. If f()) and g(\) arerelatively prime and if each divides h(X), soalsodoes f(A):g()).

UNIQUE FACTORIZATION. In Problem5, we prove
IX. Every non-zero polynomial f()\) of F{\] can be written as

(22.5) foo = € gAY go(A) - - - gr()

where ¢ # 0 is a constant and the g¢; (\) are monic irreducible polynomials of F[)].

SOLVED PROBLEMS

1. Prove: If f(A) and g(A)£0 are polynomials in F[A], there exist unique polynomials A(M) and r(A)
in F{A], where r()) is either the zero polynomial or is of degree less than that of g(A), such that

(1) fn) = hdy-gh) + T
Let
n n-1
fY = agd 4+ apgd 4 eee + ad 4+ ag
and
gD = by X 4+ by N 4 eee w bih 4 bg. by £0

Clearly, the theorem is true if f(A) = 0 or if n<m. Suppose that n>m; then
ay N b H-1
O I O I/ I G S
m

is either the zero polynomial or is of degree less than that of f(\).

Q. n-m
If fi(A\) = 0 or is of degree less than that of g(A), we have proved the theorem with A()\) = blL A and

r(A) = f1(A). Otherwise, we form "

_ c _
v = 2N e - X e =
m (]

Again, if fXA) = 0 or is of degree less than that of g(\), we have proved the theorem. Otherwise, we repeat
the process. Since in each step, the degree of the remainder (assumed £ 0) is reduced, we eventually reach
a remainder r(A) = fz(A) which is either the zero polynomial or is of degree less than that of g(\).

To prove uniqueness, suppose

fy = hAy-gd) + 1 (M and  f(A) = k) -gD) + sD)
where the degrees of r(\) and s(A) are less than that of g(\). Then
B g + 1) = k) -gA) + s
and
ey - r0]lg = ry - sy

Now r(A)—s(\) is of degree less than m while. unless k(\) — A(A) = 0. [k(\) — AV ]g(\) is of degree equal
to or greater than m. Thus, k(A) — A(A) = 0, r(A) — s(A) = 0 so that k(A) = k() and r(A) = s(A). Then both
k(A) and r (\) are unique.
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2. Prove: If f(A) and g(\) are polynomials in F[ )], not both zero, they have a unique greatest common
divisor d(A) and there exist polynomials A(\) and &()\) in ¥ such that

(a) dN) = R f) + k) -g\)
If. say. f(A) =0, then d()\) = bﬁlg(/\) where by is the leading coefficient of g(A) and we have (a) with
B\ = 1 and k(A = by .
Suppose next that the degree of g(A) is not greater than that of f(A\). By Theorem I, we have
(i) fDY = @M -gd) + (D)
where ri(A) = 0 or is of degree less than that of g(A). If r(A) = 0. then d(\) = b;nlg()\) and we have (a) with
h(A) = 0 and k(\) = by .
If ri(A) # 0, we have
(i) BN = (A () + ()
where r5(A) = 0 or is of degree less than that of ri(A). If r5(\) = 0. we have from (i)
A = fN — ) gD
and from it obtain (a) by dividing by the leading coefficient of ry(A).
If ro(A) # 0, we have
(iii) nA) = gy o) + ra(d)
where rgq(A) = 0 or is of degree less than that of ro(A). If rg(A) = 0, we have from (i) and (ii)
() = g = M) = g = W) - eV -g)]
= =g fD + [+ @@l

and from it obtain (a) by dividing by the leading coefficient of ro(A).

Continuing the process under the assumption that each new remainder is different from 0, we have, in

general,

(iv) Y = Qi) i A+ TN
moreover, the process must conclude with

v fs—o(A) = g5 rsg (V) + 15N, 5\ £ 0
and

(vi) rs—lO\) = qgo4 1(A) - "s()\)

By (vi), r5(A) divides rs.q(A), and by (v), also divides rs—o(A). From (iv), we have
Ts—a(A) = gs-1 (M) Tso(N) +  Tgoi(A)

so that rs(A) divides rs-5(A). Thus, by retracing the steps leading to (vi), we conclude that rs(A) divides
both f(A) and g(A). If the leading coefficient of rg()) is ¢, then d(A) = ¢r(N).

From (1) n(A) = f(A) = 1N -gA) = k(A -f(X) + k(X)) -g(A) and substituting in (ii)
Ay = =@M fA) + T+ a ) Mgy = A f) + kNN
From (iif), m(d) = 7(A) — 9g(A) *7(A). Substituting for r;(\) and ro()\), we have
B = [+ M) gl + (=) = 2500 — 6N - 2N - (Mg A
= A -fN) + Ea(M)-g(N)
Continuing, we obtain finally,
SN = AN fA) + ks(M) gV
Then d\) = ¢'r(d) = hg(N) - f(N) + chsN)-gA) = RAY-fN) + kN -g(\)  as required.

The proof that d(A) is unique is left as an excercise.



176 POLYNOMIALS OVER A FIELD [CHAP. 22

3. Find the greatest common divisor d()\) of
foy = 3%+ + 110+ 6 and gy = N +2X - R -r+2
and express d(A) in the form of Theorem III.

We find

(i) fOO) = GA+Dgh) + X+a¥ +6)r+49)

iy gy = A-2C+a@+erray + R+TA+10)
(i) B+ a2+ 6h+4 = (A=3)(R+TA+10) + (1TA+34)
and )

: o ly.5

(ivy A + TA + 10 = (17)\+17)(17)\+34)

The greatest common divisor is flﬁ(l’?)w 34) = A+ 2.
From (iii),
1A+ 32 = (X +al+6A+4) — A= +T7A+10)
Substituting for X + 7TA + 10 from (ii)
1A+ 3¢ = X rafser+a — A-3lgy - A-2) R +a8 160+ 0]
= XA+ +aX +6A+4 - (A -3)gN)

and for X + 4X + 6\ + 4 from (i)

It

17\ + 34 B ZBA+ DN + (=32° + 1482 — 17\ = O)gV)

Then

A+ 2 = 1%{()?—5)\+7)-f()\) + —117(—3)\3+14A2 —1TA — 4)-g(N)

4. Prove: If the greatest common divisor of f(\) of degree n>0 and g(\) of degree m>0 is not 1,
there exist non-zero polynomials a(A) of degree <m and b(\) of degree < n such that

(a) a\)-fy + bA)-gd)y = 0
and conversely.

Let the greatest common divisor of f(A) and g(A) be d(\) £ 1; then

fAy = Ay and g = AN g
where fi(A) is of degree <n and g4(A) is of degree <m. Now
BN fA) = g -dN Q) = g -fA)
and
g + A -eM] = 0
Thus, taking a(A) = go(A) and b(A) = —fy(A), we have (a).

Conversely, suppose f(A) and g(A) are relatively prime and (e¢) holds. Then by Theorem IV there exist
polynomials A(A) and k() such that

RN + B -gd) = 1
Then. using (a).
ad) = a)-R-fD) + a) k) g
= —bN)-AAY g\ + a(A) k() -g(\)

and g(\) divides a(\). But this is impossible; hence, if (@) holds, f(A) and g(A) cannot be relatively prime.
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5.

10.

11.

Prove: Every non-zero polynomial f{}) in F[A] can be written as
fY = c-qa) ) o gr(V)

where ¢ # 0 is a constant and the g;(X\) are monic irreducible polynomials in F[)].

Write
(i) fy = an-fiV
where a,, is the leading coefficient of f(A). If fy(\) is irreducible, then (i) satisfies the conditions of the
theorem. Otherwise, there is a factorization
(ii) f) = ay-g)-kQ)

If g(A) and A(X) are irreducible, then (ii) satisfies the conditions of the theorem. Otherwise, further factor-
ization leads to a set of monic irreducible factors.

To prove uniqueness, suppose that
31N qoA) .. (D) and  ap py(d) po(d) ... ps(A)

are two factorizations with r<s. Since g;(\) divides ps(A)-po(A) ... ps(X), it must divide some one of the
pi(A\) which, by a change in numbering, may be taken as p2(A). Since py(A) is monic and irreducible. g1\ =
P1(A). Then gy(A) divides po(A)-pg() ... ps(A) and, after a repetition of the argument above, g,(\) = Po(A).
Eventually. we have g;(A) = pi(A) for i = 1.2..... rand preg(A) pres(A)... p(A) = 1. Since the latter equal-
ity is impossible, r = s and uniqueness is established.

SUPPLEMENTARY PROBLEMS

- Give an example in which the degree of f()\) + g(\) is less than the degree of either f(M) or g(\).
. Prove Theorem III.
- Prove: If f(A) divides g()) and A()). it divides g(\) + h(N).

- Find a necessary and sufficient condition that the two non-zero polynomials f(A) and g(\) in F[A] divide

each other.

For each of the following. express the greatest common divisor in the form of Theorem IV.
@ fN) = 2A° =A%+ 202 6A-4.  gA) = M- A - X240 2

By f) = AN -3 110+6. g = A®—2\%— 2\ — 3

© f) = 2%+ 55X +a® - N2 A+ 1, g\ = A%+ 202+ 24+ 1

@) f(A = 3A* - 42+ A2~ 5\ + 6, gy = A2+ 20+ 2

Ans. (@ M -2 = —LA-DIY) + L@+ De)

i}

() A=3 = — %(Aw)f(/\) + %(A2+5)\+5)g</\)

() A+1

1 1 3 2
E()\+4)f()\) + 1_3:(—2/\ —9X° — 24+ 9 g\

_ 1 1 3 2
@) 1 = m(s)umf()\) ¥ 1_02<—15/\ +44A° — 55X + 45) g(A)

Prove Theorem VI.

Hint. Let d(A) be the greatest common divisor of f(\) and g(Ay; then g(\) = d(A)-k(\) and either d(A) or
k(M) is a constant.
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12. Prove Theorems VII and VIIIL.
13. Prove: If f(\) is relatively prime to g(A) and divides g(A)-a()), it divides a()).

14. The least common multiple of f(\) and g(A) is a monic polynomial which is a multiple of both f(A) and g(A),
and is of minimum degree. Find the greatest common divisor and the least common multiple of
@ f) = -1, g = ¥-1
) fA) = A=DA+1YA+2). g\ = A+DA+27(A-3)

Ans. (a) g.c.d. A-1; lem = AZ-DXP+A+1)

(b ged. = A+DA+2);  lem = A-DA+1PA+2A=3)
122
15. Given 4 = |2 1 2], show
221
@ SN = ¥ -32—9A~5 and ¢(4) = A3 —34° -94 -5 = 0

(b m(A)y =0, when mQA) = > —4X - 5.
16. What property of a field is not satisfied by a polynomial domain?

17. The scalar ¢ is called a reot of the polynomial f(A) if f(¢) = 0. Prove: The scalar c is a root of f(A) if
and only if A — ¢ is a factor of f(A).

18. Suppose f(A) = ()\-—c)kg()\). (a) Show that ¢ is a root of multiplicity kl—l of f'(\). (b) Show that c is a
root of multiplicity &> 1 of f(A) if and only if ¢ is a root of both f(A) and f (A).

19. Take f(\) and g(A), not both 0, in F[)] with greatest common divisor d (\). Let K be any field containing F.
Show that if D (\) is the greatest common divisor of f(A) and g()\) considered in K[A}. then D (X) = d(\).
Hint: Let d\) = AW F+EN g, fA) = s D), g = t(A) D). and D) = e¢(A)* d(\).

20. Prove: An n-square matrix 4 is normal if A’ can be expressed as a polynomial
s S-1
aSA + as_lA + ...+ a1A + aol

in 4.
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Lambda Matrices

DEFINITIONS. Let F[A] be a polynomial domain consisting of all polynomials in A with coefficients
in F. A non-zero m xn matrix over F[]

a1 (A) ai2(A) ayn (A)

(23.1) A(A) - [d()\)] — a1 (A) azo(A) aon (A)
' L

an1t(A)  apo(A) . agn(V)

is called a A-matrix.

Let p be the maximum degree in A of the polynomials ayj (A) of (23.1). Then A()\) can be
written as a matrix polynomial of degree p in A,
(23.2) ANy = Apﬂb L P i N
where the 4, are m xn matrices over F.
X+r+1 M+2X+30+5
[Aﬁ -4 X —3x2 :l

o1 e fo2l s to3l . oo 1 5

is a A-matrix or matrix polynomial of degree four.

p-1

Example 1. AN =

If A(M\) is n-square, it is called singular or non-singular according as JA(\)| is oris not
zero. Further, A(\) is called proper or improper according as 4, is non-singular or singular.
The matrix polynomial of Example 1 is non-singular and improper.

OPERATIONS WITH A-MATRICES. Consider the two n-square A-matrices or matrix polynomials

over F(\)

(23.3) AN = A0 A, T e dn e
and

(23.4) By = ByX + By ATh o+ L+ ByA + B

The matrices (23.3) and (23.4) are said to be equal, Ay = By, provided p=qand 4; = B
(i=0,1,2,...,p).

The sum A(X) + B(\) is a \-matrix C(\) obtained by adding corresponding elements of the
two A-matrices.

i

The product A(A) “B(\) is a A-matrix or matrix polynomial of degree at most p+q. If either
A(A) or B(A) is non-singular, the degree of A(A)*B(A) and also of B(A)*A(\) is exactly p+g.

The equality (23.3) is not disturbed when X is replaced throughout by any scalar % of F.
For example, putting A =% in (23.3) yields

Al = Ak v A, BTN e Ak v A

179
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However, when A is replaced by an n-square matrix C, two results can be obtained due to the
fact that, in general, two n-square matrices do not commute. We define

(23.5) Ap(Cy = A¢Cﬁ+A¢_1C¢—1+... + A, C + Ay
and

“ p p-1
(23.6) A (@) = C A¢ + C A¢,_1 + ...+ CAy + Ag

called respectively the right and left functional values of A(\).

2 1 0 0 1 01 1 2
Example 2. Let A4\ = A A;I = A2+ A+ and C = .
A-2 AT+2 0 1 1 0 -2 2 3 4

1 o]lf1 27 o 1| [t 2 "o 1 10 15
0 113 4 1 o] 3 4 -2 2 14 26
and :
1 21?11 o 1 2fJo 1 0 1 9 12
A0y = + + =
3 4o 1 3 4f11 o -2 2 17 27

See Problem 1.

DIVISION. In Problem 2, we prove
1. If A(\) and B(\) are matrix polynomials (23.3) and (23.4) and if Bq is non-singular,

then there exist unique matrix polynomials Q1(A), Ri(A); Q.(\), Ro(A\), where R;(A) and
R,(\) are either zero or of degree less than that of 5(A), such that

(23.7) AN = Q10 B(AY + Ry
and
(23.8) ANy = BW)-Qo(M) + Ro(V)

If R,(\) =0, B(\) is called a right divisor of A(\); if R,(\) =0, B(\) is called a left di-
visor of A(\).

NaX+a-1 XX +r+2 X+1 1
Example 3. If A\ = and B\ = 2l then

2X = A 23+ 2\ A
X1 a-i)@er 1] aX  2A+3
A0y = = A BX) + RN
@ [ oA 2 _[ PR N I [—5)\ 2 b B !l
and _ _
X+1 1 XA+l
A = = B A" A
o B /\QM] = 1] M) Qo)

Here, B(\) is a left divisor of 4 (A).
See Problem 3.

A matrix polynomial of the form
(23.9) By = bgN L+ by AT L 4 bh Ly bl = b,
is called scalar. A scalar matrix polynomial B(\) = b(1)" ln commutes with every n-square ma-
trix polynomial.
If in (23.7) and (23.8), B(\) = b(\)-I, then
(23.10) AN = Qe B + Rid) = B Qi) + Ry

MX+2d A+l

Example 4. Let A(A) = [ ] and B(A) = (A+2)],. Then

AZ-1  2A+1
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Aoffarz o | o
r=2 2] o a+2 3 -3
N - A+2 0 A1 Lo
Aan = 0 A+2|fr-2 2 3 -3

If Ry(X)=0 in(23.10), then A(XN) = b(A)/* Q.(\) and we have

II. A matrix polynomial A(A) =[a; J(A)] of degree n is divisible by a scalar matrix pol-
ynomial B(A) = b(A)- I, if and only if every a; (/\) is divisible by b(M).

AN Q1A B(A) + Ry(N)

2}
[t}

and

i}

B Q1A + Ry(N)

THE REMAINDER THEOREM. Let A(\) be the A-matrix of (23.3) and let B = [5; ] be an n-square
matrix over F. Since A/ - B is non-singular, we may write

(23.11) AN = QN (AI-B) + Ry
and
(23.12) AN = AI-B) QA + R,

where R, and R, are free of A. It can be shown

I0. If the matrix polynomial A(A) of (23.3) is divided by A/ - B, where B = [b 1 is n-
square, until remainders R, and R,, free of A, are obtained, then

R = AzBy = A, B + A, BP ™ + . 4 4B + A,

P p-1
and 5 ’
—1
RQ = AL (B) = B Aﬁ + B ¢) 1 + PN + BAl + Ao
Example 5. Let A\ AR d M-B A- Th
. e = - . n
xample (A) Ao R42 an e
A+l 3 [|a-1 - 15
AN = = M OI-B) + R
) [4 A+4:||:~3 A—4] * [14 26;1 QM ¢ Y&
and
AN Amlo -2 Al 3 L0012 A —B)Qu(\) + R
- - _ +
-3 A-4|| 4 A+a 17 27 ¢ 1020 + Re

From Example 2, Ry = Ap(B) and R, = AL(B) in accordance with Theorem III.

When A(X) is a scalar matrix polynomial

AN = f)l = aﬁ,l)\{J + a¢>_1lkb_1 + oo+ adN + oagl
the remainders in (23.11) and (23.12) are identical so that
Ri = R = a8 +ay B 4 4B + aol

and we have

IV. If a scalar matrix polynomial fy- 1, is divided by Al, - B until a remainder R
free of A, is obtained, then R = f(B).

*

As a consequrence, we have

V. A scalar matrix polynomial fvy- L, is divisible by Al, — B if and only if f(B) =0.

CAYLEY-HAMILTON THEOREM. Consider the n-square matrix 4 = [a ] having characteristic ma-
trix ]~ 4 and characteristic equation ¢ (\) = |A] - 4| =0. By (6. 2)

M =-My-adf A -4) = -1
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Then ¢()\) -/ is divisible by A/~ A4 and, by Theorem V, ¢(A) =0. Thus,

V1. Every square matrix 4 = [aij] satisfies its characteristic equation ¢ (}) =0.

2 2 1
Example 6. The characteristic equationof 4 = J1 3 1 is A°— 722+ 11\ -5 = 0. Now
1 2 2
7T 12 6 32 62 31
42 = |6 13 s}, 4% = |31 63 31
6 12 7 31 62 32
and
32 62 31 7 12 6 2 2 1 1 0 0
31 63 311 - 716 13 6] + 11]1 3 1] - 5410 1 O = 0
31 62 32 6 12 17 1 2 2 0 0 1

See Problem 4.

SOLVED PROBLEMS

2 3 1 -
1. For the matrix A(\) = [);:1)\ );] ., compute 4 5(C) and A;(Cy when C = [0 2] .

1 1 0 -
AN = [ 1] A2+ [ 0] A+ [ 0] and C° = [1 ] ; then
0 0 1 0 1 1 0 4

G | PR I e P R
N o IR i R R B A
wo - LIRDL LT B

2. Prove: If A(\) and B(\) are the A-matrices (23.3) and (23.4) and if Bq is non-singular, then there
exist unique polynomial matrices Q(\), R1(A); @2(\), Ro(A), where Ri()) and R,(\) are either
zero or of degree less than that of B(A), such that

(i) AN = Qi) B + RiN)
and
(ii) ANy = B Qa(A) + Ro()

If p <gq, then (i) holds with Q1(A) = 0 and Ry (M) = A(\). Suppose that p 2 ¢; then
AQ) - 4, BFBONTT =
where C()\) is either zero or of degree at most p —1.
If C(\) is zero or of degree less than g, we have (i) with
QN = 4, Bgl)?“q and Ry = COV
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If C\) = Cs)\s+ ... where s> g, form
AN - A, BFBONTT - CBITBOINTTY = DY
If D(M) is either zero or of degree less than q. we have (i) with
= -1\b-g -13S~-q =
Q1M Ap BN ™9 + C BN and Ry = DY

otherwise, we continue the process. Since this results in a sequence of matrix polynomials C(A), D()), ...
of decreasing degrees, we ultimately reach a matrix polynomial which is either zero or of degree less than ¢
and we have (i).

To obtain (ii), begin with
AN ~ B()\)B?Af) AP

This derivation together with the proof of uniqueness will be left as an exercise. See Problem 1, Chapter 22.

G A0, A2 -1 M- 4 Bor 2y N R |
. 1ve = =
nooAN XAz X 41 e I Y

find matrices Q1(0), R1(A); Qu()), Rs(\) such that
(@) AN = Q1N B + Ry, by A = B QM) + Ro(\)  as in Problem 2.

We have
1 0 2 1 0 0 0 -1 -1 -
X+ X+ ¥+ A+ !
(] 1 1 1 0 0 0 1 1
and
2 -1 1 1
Here, B, = and B! = .
-1 1 1 2

(a) We compute

A

=
z
1
|
— N
|
IP‘ b—ll
%
+
|
O =
[
IH »—A'
! o
|
=

_ [ 1 - - - -
A - A4B5 BOON = 3 ])&’ + [2 1] P [0 1] A+ [ ! 1] = CN
11 1 0 0 0 11
-
C\) — C3B3 BN = 2 2] N+ [‘10 3:' A+ [*1 ‘1:] = D)
3 1 -6 2 11
and -
_ -6 5 -13 3 -6A-13 5A+3
DO ~ 1 = = =
() = Dy B, BV _2 3] A+ [_9 5] [_2)\_9 3>\+5j| Ry (A)

Then Qu(A) = (A4A%+ Cgh + D) By 1

5}

bodv B
0 0 2 3 4 5
N+ar+4 X +5A+6
B 22+ 4 3A+5
(&) We compute
- 2 1 10 0 -1 -1 -1
AN = BA) B, AN = o+ 2 =
( ) 82" Aa 2 1 -10A+0 0)\+ 11 Ey
- -1 - -1 -
E(A) - B(A) BQi EQA = ] A,Q + [ 6 2] )\ + [ 1 l:l = F(A)
5 3 -8 -4 11

- .1 -1 8 4 A+8 — 4
FO) - BBy Py = | 1]>~+[_7 _3] - [;7 ii;l = R

and
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Then Qx(A) = Bgl(AA,)\Q +EqA+ Fy) = [1 (il o+ [4 2] A+ [4 2]
1 0 6 3 9 5
i [A2+4A+4 2N+ 2
"IN +6r+9 3A+5
11 2
4. Given A = |3 1 1|, use the fact that 4 satisfies its characteristic equation to compute A®
2 3 1

4 — —_
and A ; also, since 4 is non-singular, to compute A Yand 477,

A-1 -1 -2

N4 = -3 A-1 -1§ = X-3X-7r-11 = 0
-2 -3 A-1
Then
3 8 5 1 32 100 42 31 29
A% = 34%+74+117 = 3|8 78| + 703 1 1] +11lo 1 o] = |45 39 31
13 8 8 3 1 001 53 45 42
[42 31 29 s 8 11 2 193 160 144
A* = 382 +74%+114 =345 39 31| + 7|8 7 8] + 11|31 1| = |22¢4 177 160
53 45 42 13 8 2 3 1 272 224 193
From 11] = -74 —3A2+A3, we have
1 0 0] 12 8
A4 - 111{_71-3A+A2} = 111—70 o] - 3l3 1 1| + 7
0 0 1 3 1 13 8 8
-2 5 -1
D T P
T
7 -1 -2
_2 5 -1] 1 11 2
47?7 = -111{-7A‘1-31+A} - 1—;—1 7l-1 =3 5| = 33fo 1 o] + 113 11
7 -1 =2 0 0 1 2 31
-8 -24 297
- L -
= 5] 40 -1 -2
-27 40 -8
5. Let Ay, Ao, ..., A, be the characteristic roots of an n-square matrix A and let A (x) be a polynomial

of degree p in x. Prove that |A(A) = A(AD) A A2)...A(A,).

We have
(1 M -4] = A=-ADA-Xo) ... A=A,
Let
(ii) h(x) = c(sl—x)(SQ—x)A..(sp-x)
Then

Bd) = (sl —d) (sal = A) .. (sp] = A)
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and
) = Plsil—al|sol —4] |5, 1 -4
= He(s1-AD(s1-Ao) . (s =A
“fe(so=A1)(sa—=Ao) ... (sQ—)\n)} {c(s'/o _Al)(sﬁ -Ao) ...
= de(sa-An(s2=A1) ... (sp= A}
“fe(s1—Ad)(s2=Aa) ... (sb A} ... {c(sl—)\n)(SQ—)\n) .. (s
= RADAAD) ... R\
using (ii).

185

(Sﬁ ‘-)\n)}

p—An)}

SUPPLEMENTARY PROBLEMS

2 2 2
6. Given A) = I}/\:fl)\ /\):] and B = [;:_1 A;A:I, compute:

202+ 20 A2+ 2A
Ner+2 22 -1

Ea

X‘+2>@+>€+A X+3X +3X
X+ - M+ X +2X

P Y
2N

(@) AQ) + BV

() AN - B\ =
(c) A\ B =

(dy BA)Y AN

o +3X R 4
2X¥ +3)0 +3A

2 2 2
1 X A 1
7. Given A(\) = A+ . B\ = ” A and C = 0 ,
A+2 A-1 A1 2 -1
Ap(C) = 2 1] Bo(C) = 3 -1 Ap(C)* Bp(C) = 5 -1
LA -2’ A I R LA ST
[5 _1 3 3
Po(C) = C) = ;
(O 9 5 Q}e( ) [3 _J
L7 7Y
- Z
A4:(C) = 2 1 B, (C) = t1 A;(Cy* B, (C) = 13
z 1 -2 L -1 3l L AR £
e - |3 o = |2 1
A F AT AR -t
where P(A) = AA)" B(A) and Q(A) = BQA)*AN).

8. If A(A) and B(X) are proper n-square A-matrices of respective degrees p and q.
A-matrix, show that the degree of the triple product in any order is at least p +q.

compute:

1
Bp(€)* Ap(C) = [3

3
BL(C)'AL(C) = [1

and if C(\) is any non-zero
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9. For each pair of matrices A(\) and B()\), find matrices Q1(A), Ry(A); QoN), RAA) satisfying (23.7) and (23.8).

o a0y 2 +ax A N
¢ B RS Y -
N [ en Neanez] 0 er
()'()__—A2+2>\-1 1 ' N P
P o2a+1 PR T, P 5AZ+ 20+ 4
() AN = X +3X2-3)1-1 3N+ 20+ 2 4N+ 6A+1
| 2N a2 N+aN A+ +8r-4
M+1 1 3a-1
B = | 2h A% A+t
A=2 2 e
3N+ -1 A%t X -\ A —2x -1
@ AN = AR -A+1 M+ X 42 A-1 B\ = A+
A A+1 2A*+ A - 2 A
4 A = 1 R,V = 0; A) = 24 A= RoV)
Ans. (a) QA = N b 1(A) =0; QOo(A) = a2 asale °
, N P—A -A-1 RO\ 0.h “A-1 A+l
(b) A = . N =0; A = ,
@ | ! z Y 0
[A+1 M43 oA+7 —16A+14 —-6A-3
() Qr(N) = | A=1 3X+5 -—3A+2 Ry(A) = | —21A+4 —21+3
b2)\—3 A A—6 5A-17 10A+3
A—1 A2 2
0,0 = [X¥+1 A 3 Ro(\) =0
-1 2 A+l
32 +6A+31 —3A°—5A-16 3N —7TA+8
(dy Q1N = A-3 oo P |
2
| -2a -1 a¥ 21 -1
81\ + 46 -12A - 16 -85\ — 23
Ri(A\) = 4N -1 15A - 9 12A -5
L—gk—s -TA 17TA -2
r3/\2’+5A+31 A -A-4 0 22%-4r+3
Qo) = A-14 A2 —2X2+6X -6
| -3A-2 3 2X% —2) -2
TIA +46 12X\ - 8 A+ 11
Ro(A) = | -26A - 30 11A +6 4\ - 4
[ -15\ - 30 2A +4 16X - 16

10. Verify in Problem 9(b) that Ry(A) = A5(C) and

Ro(A) = Ap(C) where By =Al-C.

X +1 A+1
P WD R 5
A-2 Aea-1
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11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

_ X+l 3a+1 @ oo PR
Given BQ) = Aoz A2_sasg] PV ls oA

(a) compute A(A) = B(A)" C(\)
(b) find Q(A) and R(A) of degree at most one such that  A(A) = Q(A)* BA) + R(A).

AM+saZ_TA -1 MH3AZ+s50+1 A+4 A+3 —“9A+1 -A-9
Ans. = B(A) +
M oB5A2+11A-10 A®-A2-3M+2 A-6 A1 130 -6 9\ + 10

1 2
Given A4 = [1 1]' compute as in Problem 4

™
&
" ;’}o
'—ﬁ I
1
—
lel
|
L= ™) o ow
T
~ i
N (]
1l 1l
I| ] ey |
N W
—
i 1 O
w b L
B
PN »
i
@ |
I
IS
[\]
f
[S I |
3R
l_lv-t
=2y

Prove: If A and B are similar matrices and g(A) is any scalar polynomial, then g(4) and g(B) are similar.
Hint. Show first that 4% and B* are similar for any positive integer k.

Prove: If B = diag(B4, B,, ..., Bm) and g(A) is any scalar polynomial, then
g(B) = diag(g(B1). g(B2). ..., g(B))

Prove Theorem IIL
Hint. Verify: Al - B divides A(A\)-Ap(B).

The matrix C is called a root of the scalar matrix polynomial B(\) of (23.9) if B(C) = 0. Prove: The matrix
C is a root of B(A) if and only if the characteristic matrix of C divides B(A).

Prove: If Ay, Ao ..., A, are the characteristic roots of 4 and if f(4) is any scalar polynomial in A, then the
characteristic roots of f(4) are f(Ay), f(A2), ... fQA,).

Hint. Write A-f(x) = c(x1-x)(x0-%)...(x5—x) sothat [A-f()| = ¢"|xf—A|-|xl = 4] ... |x ] -4].
Now use lxil—Al = (xi—Xi)(xi—Xg)..,(xi—)\n) and c(xl—)\j)(xg—)\j)..,(xs—)\j) = )\—f()\j).

1 -1 0
Find the characteristic roots of f(4) = A% -~ 24 +3, given 4 = {2 3 2
1 1 2

Obtain the theorem of Problem 5 as a corollary of Problem 17.
Prove: If X is an invariant vector of 4 of Problem 17, then X is an invariant vector of f(4y.
Let A(t) = [aij(‘)] where the aijm are real polynomials in the real variable ¢. Take

2 4 3 2

t"+t+1 t +2t7+3t°+5 0 1 0 2 1 3 1 0 1 5
Aty = [3 o o :] = &+ &+ 2+ ]z+[ ]

t°— 4 t°— 3t 0 0 11 0 - 0 0 -4 0
and differentiate the last member as if it were a polynomial with constant coefficients to suggest the defi-
nition d 4 d
o = [«E “ij(t)]

Derive formulas for:

(a) d%{A(:) + B} (b dit{c/l(t)}, where ¢ is a constant or ¢ = [c,;j]; (¢) {%{A(l)' B} () d%A—l(t)-

7n
Hint. For (c). write A(1)"B(1) = C(t) = [e;5(n] and differentiate cij(t) = % ajp(t) bpi(t).  For (d),
use A@)- AV = 1. k=1
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Smith Normal Form

BY AN ELEMENTARY TRANSFORMATION on a A-matrix A(\) over F )] is meant:

(I) The interchange of the ith and jth row, denoted by #
column, denoted by Ky;.

ij" the interchange of the ith and jth

(2) The multiplication of the ith row by a non-zero constant %, denoted by H; (k);

the multiplication of the ith column by a non-zero constant %k, denoted by Ki(k).

(3) The addition to the ith row of the produect of f(A), any polynomial of F[A], and the jth row,
denoted by Hij (fN);
the addition to the /th column of the product of f(A) and the jth column, denoted by Kij (fon).

These are the elementary transformations of Chapter 5 except that in (3) the word scalar has
been replaced by polynomial. An elementary transformation and the elementary matrix obtained
by performing the elementary transformation on [ will again be denoted by the same symbol.
Also, a row transformation on A(A) is effected by multiplying it on the left by the appropriate
H and a column transformation is effected by multiplying A()A) on the right by the appropriate K.

Paralleling Chapter 5, we have

1. Every elementary matrix in F[A] has an inverse which in turn is an elementary ma-
trix in F[A].

. If ’A()\)| =k # 0, with k in F, A(M) is a product of elementary matrices.

III. The rank of a A-matrix is invariant under elementary transformations.

Two n-square A-matrices A(\) and B()\) with elements in F[A] are called equivalent pro-
vided there exist P(\) = Hy ... Ho- Hy and Q) = Ky K, ... K such that

(24.1) By = PQO-A) QM)

Thus,

IV. Bquivalent mxn A-matrices have the same rank.

THE CANONICAL SET. In Problems 1 and 2, we prove

V. Let A(\) and B()\) be equivalent matrices of rank r; then the greatest common di-
visor of all s-square minors of A(\), s £r, is also the greatest common divisor of all s-
square minors of B(A).

In Problem 3, we prove

VI. Every A-matrix A(\) of rank r can be reduced by elementary transformations to the
Smith normal form

188
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rfl(/\) 0 0
0 f2(0) 0
(24.2) Ny = 0 0 ... £ ... 0
0 0
L o 0 0 0]

where each fi()\) is monic and fi()x) divides f,;“ A, =1,2,....,r=1).

When a A-matrix A(\) of rank r has been reduced to (24.2), the greatest common divisor of
all s-square minors of A(M\), s £ r, is the greatest common divisor of all s-square minors of N(\)
by Theorem V. Since in N(\) each f;(A) divides fi+1(’\>' the greatest common divisor of all s-
square minors of N(\) and thus of A(\) is

(24.3) g = [ L) f), (s=1,2,...,7)

Suppose A(A) has been reduced to
Ny = diag (fi(V), fo(N, ..., f,(N), 0, ..., 0)

and to
N.(\)y = diag (hi(/\), Ro(A), ..oy BN, O, ..., 0)
By (24.3),
gsA) = f2) foN) o fsA) = AW R (W)t hg(D)
Now g4(A) = fl()\) =hi(N), go(A) = fl()\)' fz()\) = h1()\)' ho(A) so that fQ()\) = ho(A), ...; in gen-
eral, if we define go(A) =1, then
(24.4) gs(ﬂ)/gs_l()\) = fs()\) = hS(M, (s = 1,2,....,n

and we have
VIL. The matrix N(\) of (24.2) is uniquely determined by the given matrix A(\).
Thus, the Smith normal matrices are a canonical set for equivalence over F[Al.
A+2 A+l A+3
Example 1. Consider AN = [ X +2X@ +X X+ +x 2 4382+
X+3x+2 X +20+1 3)+61+3

It is readily found that the greatest common divisor of the one-row minors (elements) of
A is g1(A) =1, the greatest common divisor of the two-row minors of A(A) is go(\) = A,
and ga(A) = 3|A\) = X®+X° . Then, by (24.4).

fi) = g1V = 1, fod) = ga(W)/g (V) = A, fa) = gaW)/go) = K +A

and the Smith normal form of A(A) is

10 0
N = 0 A 0
0 0 AM+x

For another reduction, see Problem 4.

INVARIANT FACTORS. The polynomials fi(A), fo(A), ..., [(A) in the diagonal of the Smith normal
form of A(XA) are called invariant factors of A(X). If fp(A) =1, k <r, then fi(\)=fo(x)=...=
fk()\) =1 and each is called a trivial invariant factor.

As a consequence of Theorem VII, we have
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VIII. Two n-square A-matrices over F{A] are equivalent over F[)\] if and only if they
have the same invariant factors.

ELEMENTARY DIVISORS. Let A(\) be an n-square A-matrix over F[)A] and let its invariant factors
be expressed as

(24.5) 0 = fpatTe poodTi b i =1,2,.., 1)

where pi(A), p2(A), ..., ps(A) are distinct monic, irreducible polynomials of F[\]. Some of the
945 may be zero and the corresponding factor may be suppressed; however, since g (A) divides
fi02) Giaa, 52955, G=12,.,r=1 j=1,2,...,9).

The factors {pj (M%7 #1 which appear in (24.5) are called elementary divisors over F[)\]

of A(N).
Example 2. Suppose a 10-square A-matrix A(A) over the rational field has the Smith normal form
[_1 0 0 0 0 : ]
0 1 0 0 0 :
0 0 (MA-DAN+1D 0 0 : 0
0 0 0 A -1 +1)°A 0 |
0 0 0 0 A=1P W +17° N 0\%-3) :
_______________________________ -
|
0 : 0

The rank is 5. The invariant factors are
AN = 1. L) =L fs) = A=-DK+D),
£ = A-DX N s = AP AT+ A= 3)
The elementary divisors are
A=D% A-1, A-1, A%+17, A%+1°, A%+, A%, A XN-3
Note that the elementary divisors are not necessarily distinct; in the listing each ele-

mentary divisor appears as often as it appears in the invariant factors.

Example 3. (a) Over the real field the invariant factors of A(A) of Example 2 are unchanged but the ele
mentary divisors are

A-1¥, A=1, A=1, AZ+D% X+D%, 2+, N A A=V3, A+V3

since A2—3 can be factored.

(b) Over the complex field the invariant factors remain unchanged but the elementary divisors
are

A=12 A1, A=1, A+2, QA+?2, A+i, (A=i)?,
A=, A=i. N, A A-V3 A+V3E

The invariant factors of a A-matrix determine its rank and its elementary divisors;
conversely, the rank and elementary divisors determine the invariant factors.

Example 4. Let the elementary divisors of the 6-square A-matrix A(\) of rank 5 be
LN N A-DE A-D%, A-1, A+D?, A+l
Find the invariant factors and write the Smith canonical form.
To form f5(}\), form the lowest common multiple of the elementary divisors, i.e.,
s = Xa-17a+n?
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To form f4(A), remove the elementary divisors used in fs(A) from the original list and
form the lowest common multiple of those remaining, i.e.,

fal) = RA-1F+1D
Repeating, fo(A) = A(A -1). Now the elementary divisors are exhausted; then fo(A) = fi(A) = 1.

The Smith canonical form is

[1 o 0 0 0 0

1 0 0 0 0

0 AMA-1) 0 0 0

1 Ny = o 0 XA -1PA+1) 0 0
0 0 0 AA-120+1)° 0

(0 0 0 0 0 0

Since the invariant factors of a A-matrix are invariant under elementary transformations, so
also are the elementary divisors. Thus,

IX. Two n-square A-matrices over F[A] are equivalent over F[\] if and only if they
have the same rank and the same elementary divisors.

SOLVED PROBLEMS

1. Prove: If P()\) is a product of elementary matrices, then the greatest common divisor of all s-

square minors of P(A)* A()\) is also the greatest common divisor of all s-square minors of A,

It is necessary only to consider P(A)* A(A) where P()) is each of the threetypes of elementary matrices H.

Let R(A) be an s-square minor of A(\) and let S(A) be the s-square minor of P(\)* A(M) having the same
position as R(A). Consider P(A) = Hij? its effect on A(A) is either (i) to leave R(A) unchanged, (ii) to in-
terchange two rows of R(A), or (iii) to interchange a row of R(\) with a row not in R(\). In the case of (i),
S(A) = R(A); in the case of (if). S(A\) = —R(\); in the case of (iii), S(\) is except possibly for sign another
s-square minor of A(A).

Consider P(A) = f; (k); then either S(A) = R(A) or S(A) = ER\).

Finally, consider P(\) = Hij (f(V). Its effect on A(N) is either (i) to leave R(A) unchanged, (ii) to in-
crease one of the rows of R(A) by f()) times another row of R(A). or (iii) to increase one of the rows of R(\)
by f(A) times a row not of R(A). In the case of (i) and (ii), S(A\) = R(\); in the case of (iii),

S = R t fATW
where T()\) is an s-square minor of A(\).

Thus, any s-square minor of P(A)* A(A) is a linear combination of s-square minors of A(\). If g()) is
the greatest common divisor of all s-square minors of A(\) and g1(\) is the greatest common divisor of all
s-square minors of P(A)* 4(A), then g()) divides g1(A). Let B(A) = P(A)"A(A).

Now A() =P *(A)* B(\) and P™%(\) is a product of elementary matrices. Thus, g:(\) divides g(A\) and
g1(A) = g(N).

2. Prove: If P()\) and Q()\) are products of elementary matrices, then the greatest common divisor of all
s-square minors of P(A)-A(A)-Q(A) is alsothe greatest common divisor of all s-square minors of A(A).
Let B(\) =P 4\ and CA) = B *Q(\). Since C(\) = QA BA) and Q) is a product of ele-
mentary matrices, the greatest common divisor of all s-square minors of C'(A) is the greatest common divisor
of all s-square minors of B'(A). But the greatest common divisor of all s-square minors of C'()\) isthe great-
est common divisor of all s-square minors of C(A) and the same is true for B'()\) and B(A). Thus, the greatest
common divisor of all s-square minors of C(A) = P(A)* A(\)* Q(\) is the greatest common divisor of all s-
square minors of A(A).
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3. Prove: Every A-matrix A(\) = [aijo\)] of rank r can be reduced by elementary transformations to
the Smith normal form

—fl(/\) 0 0 (;

0 fAN ... 0 ... 0

Ny = 0 0 ... fM ... 0
0 0 0 0

L0 o ... 0 ... 0

where each f;()\) is monic and f;()) divides fig ), G=1,2,...,r=1).

The theorem is true for A(A) = 0. Suppose A(A) £Z 0; then there is an element “ij(M #0 of minimum
degree. By means of a transformation of type 2, this element may be made monic and, by the proper inter-
changes of rows and of columns, can be brought into the (1,1)-position in the matrix to become the new aq1(A).

(a) Suppose a4 () divides every other element of A(A). Then by transformations of type 3, A(\) can be re-
duced to

fi 0
0 B\

(i)

where f1(A) = a11(A).

(b) Suppose that a,41(A) does not divide every element of 4(A). Let ale\) be an element in the first row
which is not divisible by a;1(A). By Theorem I, Chapter 23, we can write

alj(A) = gMai () + 71]'()\)

where rlj()\) is of degree less than that of a;1(A). From the jth column subtract the product of g(A) and
the first column so that the element in the first row and jth column is now rlj()t). By a transformation of
type 2, replace this element by one which is monic and, by an interchange of columns bring it into the
(1,1)-position as the new a,4(A). If now a14(\) divides every element of A(A), we proceed to obtain (i).
Otherwise, after a finite number of repetitions of the above procedure, we obtain a matrix in which every
element in the first row and the first column is divisible by the element occupying the (1,1)-position.

If this element divides every element of A(A), we proceed to obtain (i). Otherwise, suppose ai]-()\) is
not divisible by a11(A). Let ai1(A) =gi1(M+a11(A) and a1j(A) = qu()\)- ay1(A). From the ith row sub-
tract the product of g441(A) and the first row. This replaces aj;(A) by 0 and aij (M) by aii(A) - g41(A) cag(A).
Now add the ith row to the first. This leaves a1+ (A) unchanged but replaces ai; (A by

aij(A) = giaM) ajA) + ajD) = agA) + gL - g Ml

Since this is not divisible by a,3(A), we divide it by a11(A) and as before obtain a new replacement (the
remainder) for a11(A). This procedure is continued so long as the monic polynomial last selected as a1 (\)
does not divide every element of the matrix. After a finite number of steps we must obtain an a4 (A) which
does divide every element and then reach (i).

Next, we treat B(A) in the same manner and reach

f1( 0 0
0 fo(A) 0
0 0 (0.

Ultimately, we have the Smith normal form.

Since f;(A) is a divisor of every element of B(A) and fa(A) is the greatest common divisor of the elements
of B(A), fa(A) divides f,(A). Similarly, it is found that each fi()\) divides f; . A).
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4. Reduce

Ay =

to its Smith normal form.

It is not necessary to follow the procedure of Problem 3 here.
form is the greatest common divisor of the elements of A(A); clearly this is 1.

SMITH NORMAL FORM
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A+ 2 A+l A+ 3
ReaX+r A +AZ+x 2 +3X +
M+3r+2 M+2x+1 3N +61+3

The element fy(A) of the Smith normal

We proceed at once to obtain

such an element in the (1,1)-position and then obtain (i) of Problem 3. After subtracting the second column

from the first, we obtain
[ 1 A+l A+3 1 A+ A+3
A ~ | X R +ex 22432 +x] ~ o PN
[ A +1 A+2X+1 3N +6A+3 0 0 2N + 2\
i 0 0 L o
3
S SN I B
Now the greatest common divisor of the elements of B(A) is A. Then
1 0 0 1 0 0 1 0
0 A A+ ~ o A 0 ~ A
0 0 2XN+2) 0 0 2X%+2x 0 0 A+
and this is the required form.
5. Reduce
A A-1 A+ 2
Ay = X+ 2 M+ 22
M -2X A -31+2 +A~3
to its Smith normal form.
We find
[ 1 A-1 X+2 1 A-1 A+2 1 0 0
AN ~ A X AMr2x | o~ Jo 0 ~ [0 X o
A-2 M -32+2 A*+A-3 0 0 A+1 0 0 A+1
[1 0 0 1 0 0 1 1 0
~ o A A-1]l ~ JO -1 -A -1 ~ |0 1 A+1 ~ |0 1 0
[0 0 A+1 0 A+1 A+l 0 0 A_-) 0 0 A+

using the elementary transformations Kio(-1); Ho1(-A), Ha1(-A+2); Ko (-A+1

Koa(1); Hao(A+1), Ho(-1); Kao(-A-1), Ka(-1).

SUPPLEMENTARY PROBLEMS

Hi K,

6. Show that 5Ky = By K /Ry = Hyg(f0) Ky (-fV) =

7. Prove:
constant.

), Kaq(=A=2); Hpg(-1);

An n-square A-matrix A()\) is a product of elementary matrices if and only if |4(\)| is a non-zero
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8. Prove: An n-square A-matrix A(\) may be reduced to / by elementary transformations if and only if |A()\)|

10.

11.

12.

is a non-zero constant.

Prove: A A-matrix A(A) over F[A] has an inverse with elements in F[A] if and only if A()) is a product of

elementary matrices.

Obtain matrices P(A) and Q(A) such that

P AN QN = 1

AN = QP
given
A+l 0 1
AN = 1 A+l A
2 A+2 A+l
F 1 A+2
Hint. See Problem 6, Chapter 5.  Ans. A-1 NH2a -1
N R .

Reduce each of the following to its Smith normal form:

- - -
A A A-1 1 0 0
(@) PEESY M+ 2r M1 ~ Jo A o
207 - 20 N -2n 2 - 3h 2] 0 0 A
X+1 A+r 2 A+ 10 07
) A-1 M+1 A-2a+1] ~ o a+1 0
RS X 2N =N +1 0 0o X+
[ A+l 2A-2 A-2 »
N+r+1  2a%-2a+1 N - 2) X
O 1@ _Ac2 aN-70r4 2 —sr44 X 2N
i DY 20% — 2N AP A°
FA?+2A+1 M+x XN +a-1 X+ A
@ ¥+r+r1 N+ X X -1 N
X+ X Xaa-1 e
X+ a7 \° A NeX -1
A2+ 1 N+3r+3 A +4ar-2 A +3
A-2 A-1 A+2 A-2
© 1 a1 an+3 IN+2 3A+2 ~
X +20 A46r+a N +6A-1 A+2r+3
A? 0 0 10 0
) 0 AM-o2x+1 0 ~ lo 1 0
K 0 A+l 0 0 XXA-DA+1)

o o o -

—

o o ©

and then obtain

-A-1
—AQ‘)L+1
Miar+1

O O e ©

Obtain the elementary divisors over the rational field, the real field, and the complex field for each of the

matrices of Problem 11.
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13.

14.

15.

The following polynomials are non-trivial invariant factors of a matrix. Find its elementary divisors in the
real field.

(@ A -X A® N A% -2+t

(B A+1, -1, ¥-17, A2-1°

@ A AZHA N A% +207 - 22+ 07 - 2

@ A AN 207N A E AT 12 e N 4

dns. (@ XN A A=12 A-1, A-1
(B A+1, A+1, A+17 A+1° A-1, A =17 A-1)°
() A A X, X+, %+1° A-1
@ A A A A APHL %17 024172 A+l

The following polynomials are the elementary divisors of a matrix whose rank is six. What are its invariant
factors?

(@ A A A+1, A+2, A+3, A+4 (© A=-1", A-1% A-1° A-1, A+1)?
B XX N A-12 A-1 @ X, XA A+2° a2, a+2)7?
Ans. (a) 1, 1, 1, 1, A, AQA+DA+2)(A+3)(A+4)

® 1, 1,1, A PA-1), ¥r-1)?

(&) 1, 1, A-1, A=1° -1, A-1’A+1)°

(@ 1, 1, 1, AA+27, A2+ APa+2)®

Solve the system of ordinary linear differential equations

Dxq + D+D)xg = 0
(D+2)x4 - (D-D=xz =

(D+1)yxo + (D+ x5 = &b

where x4, xo. x5 are unknown real functions of a real variable ¢ and D = dit

Hint. In matrix notation, the system is
D D+1 0 xq 0
AX = D+2 0 -D+1 X0 = t = H
0 D+1 D+2]|1{xs et

Now the polynomials in D of 4 combine as do the polynomials in A of a A-matrix; hence, beginning with a
computing form similar to that of Problem 6, Chapter 5, and using in order the elementary transformations:
Kio(-1), Hi(-1). Koa(D+1), Hp1(=D=2). Hzy(D+1), Koa(D), Hoa(~4), Ko(3). K3o(5D +7), Hap(-3D),
Hs(2), K5(1/5) obtain

-1 0o o 1 3(D+1) {5(5D*+12D+7) 10 0
PAQ = 5D +6 1 -4 |A|l-1 D - 1%(51)%70) = lo1 0 = N,
-5D%-8D -2 -D 4D+2 0 3D {5(5D%+1D+2) 00 02+§D+§
the Smith normal form of 4.
Use the linear transformation X = QY to carry AX =H into AQY = H and from PAQY = N,Y = PH

get
y1=0, 5o = t— 4et, (D% + %D + %)ys = get-1 and yg = Kie“*t/5 + Kyet+ get - %

Finally, use X = QY to obtain the required solution

3

Xy = 3C1e—4t/5 + %t - g, Xo = 12616—‘4t/5 + CQE_t - 1

, Xq = —2C18-4t/5+ %'et"' Z

0D =



Chapter 25

The Minimum Polynomial of a Matrix

THE CHARACTERISTIC MATRIX A/ - A of an n-square matrix 4 over F is a non-singular A-matrix
having invariant factors and elementary divisors. Using (24.4) it is easy to show

I. If Dis a diagonal matrix, the elementary divisors of AI- D are its diagonal elements.

In Problem 1, we prove

II. Two n-square matrices 4 and B over F are similar over F if and only if their char-
acteristic matrices have the same invariant factors or the same rank and the same elemen-
tary divisors in F[\].

From Theorems I and 1, we have

HI. An n-square matrix 4 over F is similar to a diagonal matrix if and only if A/~ 4
has linear elementary divisors in F[A].

SIMILARITY INVARIANTS. The invariant factors of A] - 4 are called similarity invariants of A.

Let P(\) and Q(\) be non-singular matrices such that P())- (M-=4)-Q(\) is the Smith nor-
mal form

diag (f,(0), fo(A) -.vh S(A))

Now [PQ)-A=-4)-Q) | = [P0 = L)L) ... f.
Since () and f;(x) are monic, |P(A)|-|Q(\)| = 1 and we have

IV. The characteristic polynomial of an n-square matrix A4 is the product of the invar-
iant factors of A/-A or of the similarity invariants of 4.

THE MINIMUM POLYNOMIAL. By the Cayley-Hamilton Theorem (Chapter 23), every n-square matrix
A satisfies its characteristic equation ¢(A) =0 of degree n. That monic polynomial m()\) of
minimum degree such that m(4) = 0 is called the minimum polynomial of 4 and m(\) =0 is
called the minimum equation of 4. (m()) is also called the minimum function of 4.

The most elementary procedure for finding the minimum polynomial of A # 0 involves the
following routine:

(1y If A=aol, then m(\) = A - ap;

(i) If A#al forallabut A° = a4+ all, then m(\) = ¥ — a\ - ap;

(i) If A% # ad + bl forall aand b but A% = A%+ a4 + a5l, then
mA) = X - af - g\ - aq

and so on.

1
Example 1. Find the minimum polynomial of 4 = |2
2

N = o
=N N

196
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Clearly 4 — agl = 0 is impossible. Set

A2 =

W o0 W
®w W
o = O

0
0
1

o W 0
[t}
N N

1 2 1
aq] 2 2| + a0
2 1 0

= @y + ag,

R 9
Using the first two elements of the first row of each matrix, we have {8 - % ; then
= 4Gy

ay, = 4 and ag= 5. After (and not before) checking for every element of A?, we conclude that
A2 = 44 + 5] and the required minimum polynomial is X2 — 4\ — 5.

In Problem 2, we prove

V. If 4 is any n-square matrix over F and f(\) is any polynomial over F, then f(4)=
0 if and only if the minimum polynomial m()) of 4 divides f()).
In Problem 3, we prove

VI. The minimum polynomial m()\) of an n-square matrix 4 is that similarity invariant
f(A) of A which has the highest degree.
Since the similarity invariants fy(A), f(A), ..., fy-o(A) all divide f(A), we have

VII. The characteristic polynomial ¢ (A) of 4 is the product of the minimum polynomial
of A and certain monic factors of m()).

VIII. The characteristic matrix of an n-square matrix 4 has distinct linear elementary
divisors if and only if m(})), the minimum polynomial of A4, has only distinct linear factors.

NON-DEROGATORY MATRICES. An n-square matrix 4 whose characteristic polynomial and minimum
polynomial are identical is called non-derogatory; otherwise, derogatory. We have

IX. An n-square matrix A is non-derogatory if and only if 4 has just one non-trivial
similarity invariant.

It is also easy to show

X. If By and B, have minimum polynomials m,()\) and mo()\) respectively, the minimum
polynomial m(A) of the direct sum D = diag(B,,B,) is the least common multiple of my())
and mo(A).

This result may be extended to the direct sum of m matrices.
XI. Let gi()\), go(A). ..., gn (A) be distinct, monic, irreducible polynomials in FIA] and
let 4; be a non-derogatory matrix such that |AJ - Ajl = {g]- (A)}aj, (j=1,2,...,m). Then

B = diag(4y, 45, ... 4y) has o) = {gWF - {go W12 1g,01™  as both char-
acteristic and minimum polynomial.

COMPANION MATRIX. Let A be non-derogatory with non-trivial similarity invariant

(25.1) BN = BN = A 4 @ N 4 e 4 a4 as

We define as the companion matrix of gy,

(25.2) Cigy = [-a], if gA\) = A+a

and for n>1
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[0 1 o 0 0 0 ]
0 0 1 0 0 0
- I BEEETTITTTPTTRTORIROS .
(25.3) e o 0 0 0 1 0
0 0 0 0 0 1
—G —&4 =G ... —Qxg —Apo —0py

In Problem 4, we prove

XII. The companion matrix C(g) of a polynomial g(A) has g(\) as both its character-
istic and minimum polynomial.

(Some authors prefer to define C(g) as the transpose of the matrix given in (25.3).
Both forms will be used here.)

See Problem 5.
It is easy to show
XIII. If 4 is non-derogatory with non-trivial similarity invariant L) = ()\—a)n, then
al0..00

..............

(25.4) J=lal, if n=1, and I = @ , if n>1

has f()) as its characteristic and minimum polynomial.

SOLVED PROBLEMS

1. Prove: Two n-square matrices A and B over F are similar over F if and only if their characteristic
matrices have the same invariant factors or the same elementary divisors in F[A].

Suppose A and B are similar. From (i) of Problem 1, Chapter 20, it follows that AJ-4 and A/ —B are
equivalent. Then by Theorems VII and IX of Chapter 24. they have the same invariant factors and the same
elementary divisors.

Conversely, let AI—4 and A/—B have the same invariant factors or elementary divisors. Then by
Theorem VIII, Chapter 24 there exist non-singular A-matrices P(\) and Q()\) such that

P(A)-(M—A)-()(A) = M-B
or
4
(i) PY-(Al-4)y = (AI-B)-Q (N
Let
(i) P(Ay = (M-=B)-Si(AM) + R,
(iii) QN = S(\)-(M-B) + Ry
(iv) 0N = SaN-I=4) + Rg

where R, R,, and Rg are free of A. Substituting in (i), we have

(AI=B)-S;(A)-(AI-4) + Ry(M-4) = M =B)-Ss(My- (M =A4) + (AI-B)R,4
or
T2 AI=B{S M-S AT-4) = (M=BYRg — RyM-4)
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Then S;(A) — Sg(A) = 0 and
(vi) (AMl=BYR; = RyAI-4)

since otherwise the left member of (v) is of degree at least two while the right member is of degree at most
one.

Using (iii), (iv), and (vi)

I = Q-7 W
= QM {SaNy - (M= 4) + Ry}
= Q) SaN) (AT =4y + {S,(0) - (M =B) + Ry IR
= Q)-S5 (A =4) + SN (M —BYRs + RyRg
= Q) SN A=Ay + SoA)-Ry -(AM—A) + R,R,
or
(vii) I — RyRs = 1O~ SsA) + SaA) - Ry AT — 4)

Now Q(A)-Sa(A) + Sp(MR; = 0 and [ = R,R; since otherwise tlie left member of (vii) is of degree zero in
A while the right member is of degree at least one. Thus, Rs = R, and, from (vi)

Al = B = RA-A)R, = ARR, — R;4R,

Since 4.B.R,, and R, are free of A, R, = R;l; then Al =B = Al — R;lARQ and 4 and B are similar, as was
to be proved.

2. Prove: If 4 is any n-square matrix over F and f(A) is any polynomial in F[X], then f(Ady =0 if and
only if the minimum polynomial m()) of A divides f(\).

By the division algorithm, Chapter 22,

fAdy = gy -m@y + r(h)

and then

f(dy gAY m(Ay + 1Ay = rd)

Suppose f(4)=0; then r(4)=0. Now if r(\) # 0, its degree is less than that of m(A), contrary to the
hypothesis that m(A) is the minimum polynomial of A. Thus, r(A) = 0 and m()\) divides fn.

Conversely, suppose f(A) = g(A)- m(\). Then f(A) = q(4d)-m(4) = 0.

3. Prove: The minimum polynomial m()\) of an n-square matrix A is that similarity invariant fa(A) of 4
which has the highest degree.

Let g4 (A) denote the greatest common divisor of the (n — 1)-square minors of AI— 4. Then

IANI=A] = ) = gV fuN

and
adj (Al —4) = g (M) -BN)

where the greatest common divisor of the elements of B\yis 1.
Now (Al-4)-adj(A/—4) = $\)-/ so that

A=Ay gna N B = gra(N)fy(M)-1

or

(1) AI-4)-BQA) = fuy-1

Then A/ —A is a divisor of f(A\)+1 and by Theorem V, Chapter 23, f4)=0.
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By Theorem V. m(A) divides f(A). Suppose

(ii)

fa) = gy -m)

Since m(A) = 0. Al —A4 is a divisor of m()\)-/. say

Then. using (i) and (ii),

(M ~A4)-B\
and

Now g(A) divides every element of B(\); hence g(\) = 1 and. by (ii).

as was to be proved.

) = mA)

mAY-I = (A-4).C\)
AT = gy -mNy -1
B(A = q-Cy

[CHAP. 25

gy - A =4 CY)

4. Prove: The companion matrix C(g) of a polynomial g(A) has g(\) as both its characteristic and

minimum polynomial.

The characteristic matrix of (25.3) is

A -1 0 ... 0 0
0 A -1 ... 0 0
0 o0 o0 ... by -1
an ay ao ... Ay-o )\+an_1
2 =
To the first column add A times the second column, X times the third column, ..., )\n times the last
column to obtain
[0 -1 o ... 0 0o ]
0 A -1 ... 0 0
(0, T
0 0 0 ... A -1
8N @y ay, ... U Atay g

Since |G(\)| = g(A). the characteristic polynomial of C(g) is g(A). Since the minor of the element g(\)
in G(A) is %1, the greatest common divisor of all (n—1)-square minors of G(A) is 1. Thus, C(g) is non-derog-

atory and its minimum polynomial is g(A).

5. The companion matrix of g(A)

[ LI e R = I e I )
(=T =

|
=

= O O = O

X+28 -2 +61-5

O = OO

!
™o

o= O oo

or, if preferred,

is

o O O - O

Q O = O O

o = O o o

= O o O o
O N = 3w
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6. Write the companion matrix of each of the following polynomials:

THE MINIMUM POLYNOMIAL OF A MATRIX

SUPPLEMENTARY PROBLEMS

(@ N+ -2\-1
By M-\ +2)
(©) A-1?°

Ans. (a)

(d)

[l == I e }
N O o

o O O O

OOD—‘l
[a

[\

(@) A= 223 - A%+ 2\

(&) X(\+1)

) A+ =22 +40-8)

0 01 0

1 @ oo 1
8 4 -2

00 01 00

10 00 10

(e)
01 00 01
12 00-10

()

h

[

S o = o
(= N =Y

7. Prove: Every 2-square matrix A4 = [ai]-] for which (a11— aso) + 4a10as1 # 0 is non-derogatory.

8. Reduce G(A) of Problem 4 to diag(1,1,....1.g(\)).

201

9. For each of the following matrices 4, (i) find the characteristic and minimum polynomial and (ii) list the

non-trivial invariant factors and the elementary divisors in the rational field.

(1
@ |o
0

o N o

-

[ o

4
—6
-3

H

Ans. (a)

()

(¢)

(d)

(e)

N

(8

*)

1
(dy |2
2

N o~ DN

(h)

0 1 1 3 200
0 (b) 5 2 6 (¢)y |01 0
3 -2 -1 -3 001
1 1 1 2 -3 1 -3
2 3 0 (@) -1 -6 -3 -6

-2 -3 -2 81 3 _3 _4 _3

-1 -1 =2 2 6 4 6

AN = mQ) =

dN) = my = X it zed =X

AN = (A-1P(A=2); i.f. A-1. A=1)(A=2)

mA) = A-1)(A=2) ; ed. A=1. A=1. A=2

SN = A1 (A=5) ; L.E. A+1. (A+1)(A=5)

m(A) = (AMHD(A=5) ; ed. A+l. A+1, A-5

AN = AP~ 4N it A NPoa)

mA) = M -4\ ; ed A A A—4

A = AA+DZ(A=1) 5 L A+1. Ao

mA) = MNP -1) poed. A A+L, A+, A1
AN = APA+1)25 if A AA+1)2
m(A) = AQA+1D)? 5 ed. A A (A+1)2

A = A=W =A=2¥; If.A=2. N2=A=2. B=A-2

m(A) = B-)A-=2

10. Prove Theorems VII and VIII.

11. Prove Theorem X.
Hint. m(D) = diag(m(Bq). m(By)) = 0 requires m(B;) = m(By) = 0; thus, my(\) and mx(\) divide m(\).

;o ed . A=2, A=2, A=2, A+1. A+l

2 11
2 (e) |11
1 11
-5 4 -6 3 8
-2 3 -2 1 2

4 -3 4 -1 -6

4 -2 4 0 -4
-1 0 -2 1 2

(A-D(A-2)(A-3); L (A-1)A=2)(A=3); e.d. (A-1). (A—=2). (A—=3)

N DN N
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12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

24.

25.

26.

Prove Theorem XI.

If 4 is n-square and if ¥ is the least positive integer such that Ak: 0. 4 is called nilpotent of index k.
Show that 4 is nilpotent of index % if and only if its characteristic roots are all zero.

Prove: (a) The characteristic roots of an n-square idempotent matrix 4 are either 0 or 1.
(b) The rank of 4 is the number of characteristic roots which are 1.

Prove: Let A.B.C.D be n-square matrices over F with C and D non-singular. There exist non-singular
matrices P and ¢ such that PCQ = A, PDQ = B if and only if R(A)=AC~4 and S(A) = AD — B have the
same invariant factors or the same elementary divisors.

Hint. Follow the proof in Problem 1. noting that similarity is replaced by equivalence.

Prove: If the minimum polynomial m(A) of a non-singular matrix 4 is of degree s, then At is expressible
as a scalar polynomial of degree s—1 in 4.

Use the minimum polynomial to find the inverse of the matrix 4 of Problem 9(A).

Prove: Every linear factor A —\; of ¢(A) is a factor of m(A).
Hint. The theorem follows from Theorem VII or assume the contrary and write m(A) = (A=A;)q(A) +r,
r#0. Then (A-A;Dq(A)++d =0 and 4-A;] has an inverse.

11
Use 4 = [0 1] to show that the minimum polynomial is not the product of the distinct factors of ¢ (A).

Prove: If g(?\) is any scalar polynomial in A, then g(4) is singular if and only if the greatest common divi-
sor of g(A) and m()\), the minimum polynomial of 4, is d(\) # 1.
Hint. (i) Suppose d(A) # 1 and use Theorem V, Chapter 22.

(ii) Suppose 4(A) = 1 and use Theorem IV, Chapter 22.

Infer from Problem 20 that when g(4) is non-singular, then [g(A)] - is expressible as a polynomial in A of
degree less than that of m(A).

Prove: If the minimum polynomial m(A) of 4 over F is irreducible in F[A] and is of degree s in A, then the
set of all scalar polynomials in A with coefficients in F of degree < s constitutes a field.

Let A and B be square matrices and denote by m(A) and n(A) respectively the minimum polynomials of 4B
and BA. Prove:

(@) m(A) = n(\) when not both 4 and B are singular.

(b) m(M\) and n(A) differ at most by a factor A when both A and B are singular.

Hint. B-m(AB)-A = (BA)-m(BA) = 0 and A-n(BA)-B = (AB)-n(AB) = 0.

Let 4 be of dimension mxn and B be of dimension nxm, m > n, and denote by ¢ (A) and /(A) respectively
the characteristic polynomials of 4B and B4A. Show ¢ (\) = )\m_nl//(/\).

Let X; be an invariant vector associated with a simple characteristic root of 4. Prove: If 4 and B com-
mute, then X; is an invariant vector of B.

If the matrices 4 and B commute, state a theorem concerning the invariant vectors of B when 4 has only
simple characteristic roots.



Chapter 26

Canonical Forms Under Similarity

THE PROBLEM. In Chapter 25 it was shown that the characteristic matrices of two similar n-square

matrices 4 and R™ AR over F have the same invariant factors and the same elementary divisors.
In this chapter, we establish representatives of the set of all matrices R™"4AR which are (i) sim-
ple in structure and (ii) put into view either the invariant factors or the elementary divisors.
These matrices, four in number, are called canonical forms of A. They correspond to the canon-

I, 0 .
ical matrix N = Or 0 introduced earlier for all mxn matrices of rank r under equivalence.

THE RATIONAL CANONICAL FORM. L.et 4 be an n-square matrix over F and suppose first that its

characteristic matrix has just one non-trivial invariant factor fn()\). The companion matrix C(fn)
of fn()\) was shown in Chapter 25 to be similar to A. We define it to be the rational canonical
form S of all matrices similar to 4.

Suppose next that the Smith normal form of A/ -4 is

(26.1) diag (1 1, ., 1, f5N), f5,, V), ooy fO0)

with the non-trivial invariant factor fi()‘) of degree s;s (¢=j,j+1,...,n). We define as the ra-
tional canonical form of all matrices similar to 4

(26.2) S = diag (C(fy), C(fj,p), - C(fy)

To show that 4 and S have the same similarity invariants we note that C(fi) is similar to
D; =diag (1,1, ..., 1, f; (M) and, thus, S is similar to diag(Dj,DjH, ....D,). By a sequence of
interchanges of two rows and the same two columns, we have S similar to

diag (1, 1, co L0, 0 0, [, 00)
We have proved

I. Every square matrix 4 is similar to the direct sum (26.2) of the companion matrices
of the non-trivial invariant factors of \[ - 4.

Example 1. Let the non-trivial similarity invariants of 4 over the rational field be

fa)y = A+l fo) = X+1, fioh) = X +aa®+1

Then
[0 1 0 o o 0]
0 0 1 0 0 0
0 10 0 0 0 1 0 0
Cife) = [-1], c = 0o 0 1], c =
(fe) [-1] (fo) (f10) 000 0 1 0
-1 0 O
0 0 0 0 0 1
_—1 0 0 -2 O 0_

203
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and

"1 0 0 0 0 00 O 0 0]

0 010 000 00 0

0 001 000 0 0 O

0 -1 00 000 00 0

0 000 010 0600

S = diag (C(fe), C(fo). C =

(C(fs). C(fo). C(f10)) O 000 0601 00 0

0 000 000 100

0 000 00O0 OT1 0

0 000 000 00 1

(0 000 -1 00 -200

is the required form of Theorem L

Note. The order in which the companion matrices are arranged along the diagonal is
immaterial. Also

-1 00 o000 0 0 0]
000100000 0
010 00O0O0O0 0

001 00000 0

000 00O0TO0O0 0 —1
000 010000 0
000 00100TO0 O
000 000O0T1T20 0 -2
000 00O0GO0T1G0 0
{000 000001 0

using the transpose of each of the companion matrices above is an alternate form.

A SECOND CANONICAL FORM. Let the characteristic matrix of 4 have as non-trivial invariant fac-

tors the polynomials f; (A) of (26.1). Suppose that the elementary divisors are powers of ¢ dis-
tinct irreducible polynomials in F[A]: ps(A), po(A), ..., pr(A). Let

(26.3) 00 = I 0% 00T =1,

where not every factor need appear since some of the ¢’s may be zero. The companion matrix
C(p]gki) of any factor present has {pk(}\)}qki as the only non-trivial similarity invariant; hence,
C(f;) is similar to

diag (Cp32), CpJ#h), ..., CpJth)

We have
II. Every square matrix A over F is similar to the direct sum of the companion matri-
ces of the elementary divisors over F of AI— 4.

Example 2. For the matrix 4 of Example 1, the elementary divisors over the rational field are A+1, A+1,
A+ 12 A2 +1, ()\2——)\+ 1)> Their respective companion matrices are

01 0 0
- 0 1 0 1 D 0 1 0

-1}, -1j, , .
(-1l (-1 [—1 —2] [—1 1] 0 0 o0 1
-1 2 -3 2

and the canonical form of Theorem II is
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1 0 0 0 00 00 0 0
0 -1 0 0 00 0O 0O
O 0 06 1 00 00 00
0 0~-1-2 00 00 00
0O 0 0 0 061 00 00
0O 0 0 0-11 00 00
0 0 0 0 00 01 0 O
O 0 0 0 00 00 10
0 0 0 0 00 00 0 1
0 0 0 0 00 -1 2 -3 2

THE JACOBSON CANONICAL FORM. Let 4 be the matrix of the section above with the elementary
divisors of its characteristic matrix expressed as powers of irreducible polynomials in F[A].
Consider an elementary divisor {p(\)}?. If ¢ =1, use C(p), the companion matrix; if ¢q>1,

build
Cp M 0 0 1
0 Cpy M 0 0
(26.4) Cq(P) N R R R R
0 Cp) M
! 0 Co)

where M is a matrix of the same order as C(p) having the element 1 in the lower left hand corner
and zeroes elsewhere. The matrix Cq(p) of (26.4), with the understanding that C,(p) = C(p) is
called the hypercompanion matrix of {p()\)}q. Note that in (26.4), there is a continuous line of
1’s just above the diagonal.

When the alternate companion matrix C’(p) is used, the hypercompanion matrix of {p(A)}qis

') o o ... 0 0
N C'(p) 0 .
0 N C'( e 0 0
Cytp) P)
0 0 . Clp 0
i N Cp)

where N is a matrix of the same order as C'(p) having the element 1 in the upper right hand cor-
ner and zeroes elsewhere. In this form there is a continuous line of 1’s just below the diagonal.
Example 3. Let {p(M}9 = (\2+2A-1* Then C(p) = [(1) ;:] M =[(1) g] and

n 1 ]

-2

- o o
= o o o O

Cqpd

= o = O O O O O
- 0O O o O o ©

O O o o o = O
o O O o o O

S O O O = O = O
o O O O

o O = O - O O O
[= I =]

-2
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In Problem 1, it is shown that Cq(p) has {p()\)}q as its only non-trivial similarity invariant.
Thus, Cq(p) is similar to C(pq) and may be substituted for it in the canonical form of Theorem II.
We have

III. Every square matrix 4 over F is similar to the direct sum of the hypercompanion
matrices of the elementary divisors over F of Al - 4.

Example 4. For the matrix A of Example 2, the hypercompanion matrices of the elementary divisors A+1,
2
A+1 and X —A+1 are their companion matrices, the hypercompanion matrix of (A+1)°is

0 1 0 0
[-1 1] R s -1 1 1 0 _
and that of (A* —A+1)° is Thus, the canonical form of Theorem
0 -1 0 0 0 1
0O 0 -1 1
III is
-1 o O 00 00 0 0]
0 -1 0 0 0 0 0 0 0
0 0 -1 1 0 0 0 0 0 0
0 0 0 -1 0 0 0 0 0 0
0 0 0 0 01 0 0 0 0
0 0 0 0 -1 1 00 0 0
0 0 0 0 0 0 01 0 0
0 0 0 0 0 0 -1 1 1 0
0 0 0 0 0 0 0 0 0 1
| 0 0 0 0 0 0 0 0 -1 1__

The use of the term "rational" in connection with the canonical form of Theorem I is some-
what misleading. It was used originally to indicate that in obfaining the canonical form only
rational operations in the field of the elements of A are necessary. But this is, of course, true
also of the canonical forms (introduced later) of Theorems I and HI. To further add to the con-
fusion, the canonical form of Theorem IH is sometimes called the rational canonical form.

THE CLASSICAL CANONICAL FORM. Let the elementary divisors of the characteristic matrix of 4
be powers of linear polynomials. The canonical form of Theorem I is then the direct sum of
hypercompanion matrices of the form

a; 1 R 0
(26.5) Cq(p) S I RPN
ai 1
_O 0 ai_

corresponding to the elementary divisor {p()\)}q = (A- ai)q. For an example, see Problem 2.

This special case of the canonical form of Theorem III is known as the Jordan or classical
canonical form. [Note that Cq(p) of (26.5) is of the type J of (25.4).] We have

I1V. Let ¥ be the field in which the characteristic polynomial of a matrix 4 factors
into linear polynomials. Then 4 is similar over ‘@F to the direct sum of hypercompanion mat-
rices of the form (26.5), each matrix corresponding to an elementary divisor (A —a; yd.

Example 5. Let the elementary divisors over the complex field of Al —4 be: A—i, A+i, A =i, A+i)%
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The classical canonical form of 4 is

i o o0 0o o 0]
0 i 00 0 0
0 0 i 1 0 0
0 0 0 i 0 o
0 0 0 0 —i 1
0 000 0 —i]

From Theorem IV follows

V. An n-square matrix 4 is similar to a diagonal matrix if and only if the elementary
divisors of A\l - A are linear polynomials, that is, if and only if the minimum polynomial of

A is the product of distinct linear polynomials.
See Problems 2- 4.

A REDUCTION TO RATIONAL CANONICAL FORM. In concluding this discussion of canonical forms,
it will be shown that a reduction of any n-square matrix to its rational canonical form can be
made, at least theoretically, without having prior knowledge of the invariant factors of M~ A,
A somewhat different treatment of this can be found in Dickson, L. E., Modern Algebraic Theo-
ries, Benj.H. Sanborn, 1926. Some improvement on purely computational aspects is made in
Browne, E. T., American Mathematical Monthly, vol. 48 (1940).

We shall need the following definitions:

If 4 is an n-square matrix and X is an n-vector over F and if g(\) is the monic polynomial
in F[A] of minimum degree such that g(4)- X =0, then with respect to 4 the vector X is said
to belong to g(A).

If, with respect to 4, the vector X belongs to g(A) of degree p, the linearly independent
vectors X, AX, AQX, Aﬁ_lX are called a chain having X as its leader.

2 -6 3
Example 6. Let 4 = ]1 -3 1]. The vectors X =[1,0,0]' and AX = [2.1,1]" are linearly independent
1 -2 0

while A4%X = X. Then (AQ—I)X: 0 and X belongs to the polynomial A°—1. For Y =
[1.0.-1)". A4Y =[-1,0.1) = -Y: thus, 4 +1)Y =0 and Y belongs to the polynomial A+1.

If m(A) is the minimum polynomial of an n-square matrix 4, then m(4)-X =0 for every n-
vector X. Thus, there can be no chain of length greater than the degree of m(A). For the matrix
of Example 6, the minimum polynomial is )2 - 1.

Let S be the rational canonical form of the n-square matrix 4 over F. Then, there exists a
non-singular matrix R over F such that

(26.6) RI4R = § = diag(Cj,C- ., C

Ferr e n)
where, for convenience, C(f;) in (26.2) has been replaced by C;. We shall assume that C;, the
companion matrix of the invariant factor

f—b()\) = )\57’ + Ci,si)\si—i + ...+ CiQA + C‘l:l
has the form
— —
0 0 cil
1 0 Ci2
0 1 -c
- 13
Ci I
0 o0 0 ~Ci sy
»
0 0 0 1 —c;
L *5 J
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From (26.6), we have

(267) AR = RS = R dlag(Cj, Cj+1' ey Cﬂ)
Let R be separated into column blocks R]-,Rj+1,...,Rn so that R; and C;, (i=j,j+1,...,n)
have the same number of columns. From (26.7),
AR = A [RJ-, R]-+1, LR = [Rj, Rj+1’ Ry diag(Cj, Cj+1, N )
= [R]' Cj’Rj+1Cj+l, ...,Rﬂcn]
and
AR% = R’LCZ’ (i:]',j+1,...,n)
Denote the s; column vectors of R; by R;i, R0, ..., Risi and form the product
Sq
RiCi = [R4w Ris ...,Ris;1Ci = [Rig Ris, ..., Ris,, —kz_lRikCik]
Since B
AR; = A[Ril,RiQ,...,Risi] = [ARil.ARiz,---,ARisi] = RiC;
we have
(26.8) Ris = ARjq, Ris = AR;, = AzRilr o Ris,; = ASi_lRil
and
S
(26.9) - 2 cinRy = AR,
Substituting into (26.9) from (26.8), we obtain
3
-2 e A" 'Ry = A%iRy
or -
(26.10) (A5 + cis, A% 4 4 cipd + cisDRjw = 0

From the definition of Ci above, (26.10) may be written as
(26.11) fitdy'Riyy = 0

Let R;, be denoted by Xi so that (26.11) becomes fi(A)- Xi =0; then, since Xi,AX,L,
A? X;....,A% %X, are linearly independent, the vector X; belongs to the invariant factor f; V).
Thus, the column vectors of Ri consist of the vectors of the chain having Xi, belonging to fi()‘)'
as leader.

To summarize: the n linearly independent columns of R, satisfying (26.2), consist of n—j+1

chains N

Xp AX;, L ATTTX, =g+l n)

whose leaders belong to the respective invariant factors fj()\), fj+1 A), ..., fn(/\) and whose lengths
satisfy the condition 0 < 8j < 8544 ... %s,.
We have

VI. For a given n-square matrix 4 over F:
(i) let Xn be the leader of a chain €n of maximum length for all n-vectors over F;

(if) let X,,_, be the leader of a chain €, _; of maximum length (any member of which
is linearly independent of the preceding members and those of Cn) for all n-
vectors over F which are linearly independent of the vectors of €n;

(iii) let Xn_ ,be the leader of a chain €,,_, of maximum length (any member of which
is linearly independent of the preceding members and those of €, and €,,_;)
for all n-vectors over F which are linearly independent of the vectors of €,
and €, _y;

and so on. Then, for
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R

= X5 4%;,...4 j_ixj; Xj+1’AXj+1v~-',Asj+1— X;
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S 1

i Xy AXy, AT

J41

R™*AR is the rational canonical form of 4.

1 1 1

Example 7. Let 4 =[1 2 2| Take X =[1,0,0)"; then X.4X =[1,1,1)", 4°X =[3.5.6] are line-

1 3 2
arly independent while A4%X =[14,25,30]"=542X-X. Thus, (4°-54%+1)X =0 and X
belongs to fa(\) =m(\) =A°-5N+1 = 4 (). Taking

11 3
R = [x,4Xx.4°X] = |o 1 5
01 6
we find
1 -3 2 1 3 14
R = [0 6 -5]. AR = [4X.4°Xx,4%°Xx] = |1 5 25
0 -1 1 1 6 30
0 0 -
and R'™MR = |1 0 of = s
0 1

Here A is non-derogatory with minimum polynomial m(A) irreducible over the rational field.

Every 3-vector over this field belongs to m(\), (see Problem 11), and leads a chain of length
three. The matrix R having the vectors of any chain as column vectors is such that R~ AR = S.

2

1 3
Example 8. Let A4 = (1 2 2|. Take X =[1,-1,0]"; then AX = X and X belongs to A—1. Now A -1
1

2 2

cannot be the minimum polynomial m(A) of 4. It is, however, a divisor of m(A), (see Problem
11), and could be a similarity invariant of 4.

Next, take Y =[1,0,0]". The vectors Y, A4Y =[2,1,2)", 42Y =[11, 8,8]" are linearly
independent while A°Y =[54,43,46]" = 542Y + 34Y —7Y. Thus, Y belongs to m(\) =
AS—BAT oA+ T = ¢ (X). The polynomial A -1 is not a similarity invariant; in fact, unless
the first choice of vector belongs to a polynomial which could reasonably be the minimum
function, it should be considered a false start. The reader may verify that

0 0 -7

RYMR = |1 0 3

01 5
1 2 11
when R = [Y,4Y,4%Y] = |o 1 8
0 2 8

See Problems 5-6.

SOLVED PROBLEMS

1. Prove: The matrix Cq(p) of (26.4) has {p(A)}q as its only non-trivial similarity invariant.

Let C,(p) be of order s. The minor of the element in the last row and first column of Al - C (p)is +1
so that the greatest common divisor of all (s~1)-square minors of AJ — Cq(p) is 1. Then the invariant fac-
tors of A1~ Co(p) are 1,1,.... 1, fc (V). But fo(A) = {p}7 since

N = I)\I~Cq(p)l = [M-cp)? = {pi9



210 CANONICAL FORMS UNDER SIMILARITY [CHAP. 26

2. The canonical form (a) is that of Theorems I and II, the non-trivial invariant factor and elementary
divisor being X +4)X° +6)° +4A +1. The canonical form of Theorem I is (b).

o 1 0 © -1 1 0 0
0o 0 1 0 0 -1 1 0
(a) (b
0 0 0 1 o 0 -1 1
-1 -4 -6 -4 0 0 0 -1

3. The canonical form (a) is that of Theorem I, the invariant factors being A +2, A2 =4, X*+3X\"—4r - 12
and the elementary divisors being A+2, A+2, A+2, A—2, A—2, A+3. The canonical form of both
Theorems II and I is (b).

2 00 0 0 o] 2 o 00 0]
001 00 O 0 -2 00 0
0 40 00 0 0 0 —2 0 0 0

(a) €]
000 01 O 0 0 2 0 0
000 00 1 0 0 002 0
| 00 0 12 4 -3 0 0 0 0 -3

4. The canonical form (a) is that of Theorem III. Over the rational field the elementary divisors are
A+2, A+2, A2 +20 -17, (¥ +20—1)° and the invariant factors are

(A +2)(N +2) - 1)?, A+ +20 - 1)°
The canonical form of Theorem I is (b) and that of Theorem II is (¢).

2 00 00 00 00 OO0 0
0 -2 0 00 00 00 00 0
0 00 10 00 00 00 0
0 01-21 00 00 00 O
0 006 00 10 00 00 0
O 00 01 -20 00 00 0O
(@) 0o 00 0O 00 10 00 O
© 00 00 01 -21 00 O
0O 00 00 0O 00 10 0
0O 00 00 00 01 21 0
6 00 00 0O 00 00 1
[0 00 00 00 00 0 1 -2
010 0 00 o0 0 0 o0 0 0
001 0 00 0 0 0 0 0 0
000 1 00 0 0O 0 0 0 0O
000 ©0 10 0 0 0O 0 0 0D
-2 7T 0 —-10 —6 O 0O ¢ o0 4] o 0
(b) 000 0 00 1 0 0 0 0 0
o000 ©0 0O 0 1 0 0 0 0
000 0 0O © 0 1 0 0 0
00 O 00 ©0 0 0 1 0 D
© 00 © 00 ©0 0 0 © 1 0
o000 O 00O © 0 0 0 0 1
000 0 0 2-11 12 17 -14 21 -8
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-2 0 00 0 00 000 0 O]

0 -2 00 0 00 000 0 0

0 0 01 06 00 0O0UO0 0 0

0 0 00 1 00 000 0 0

0 0 060 0 10 000 0 0

0 0 -1 4-2-—40 000 0 0

(@ 0O 0 00 0 00 100 0 0

0 0 00 0 00 010 0 o

0 0 00 0 0O 001 0 o

0 0 00 0 00 ©060 1 0o

0 0 00 0 00 000 0 1

[0 0 00 0 01-694 -9 6]
f’—z 3 3 -1 -§ -2]

1 0 -1 0 2

5. Let 4- | > "2 0 20 Take X =[1,0,0,0,0,0]".
1 1 -1 -1 2 1
1 -2 -1 1 3 1
[ 1 0 -1 0o 2 o]

Then X, AX=[-2.1.1.1.1,1), 4°X=[1,0,-1,0,0,-1]", 4°X =[-3.1,1.1,1,2) are linearly inde-
pendent while A*X =[1,0,-2,0,0, 2]’ = 242X —-X; X belongs to A*-2\%+1. We tentatively assume
m(A) = X*~20+1 and write X, for X.

The vector Y =[0,0,0,1,0, 0]” is linearly independent of the members of the chain led by Xg and
AY =[-1,0.1,-1,1,0]" is linearly independent of ¥ and the members of the chain. Now A%Y =Y so that
Y belongs to )\2 —1. Since the two polynomials complete the set of non-trivial invariant factors, we write
Xsfor Y. When

0 -1 1 -2 1 -3 01000 0
0 00 1 0 1 10000 o
0 10 1 -1 1 4 00000 —1

R = [Xs5 AX5 Xa, AXs, A2 X ABX] = , R™'AR =
[Xs AXs. Xo. AXe. A Xo. 4°Xe] 1-10 1 0 1 00100 o
0 10 1 0 1 00010 2
0 00 1 -1 2 00001 0

the rational canonical form of 4.

Note. The vector Z =[0.1,0,0.0,0] is linearly independent of the members of the chain led by Xg
and AZ =[3.0,-2,1, -2, 0} is linearly independent of Z and the members of the chain. However, A%Z =
[-1,1,0.0.0.1}" = -AXs + 4°Xs+ Z; then (42—1)(Z—-AX5)=0 and W = Z -AXs=[2,0 -1,-1,-1,-1)"
belongs to Mot Using this as Xs, we may form another R with which to obtain the rational canonical form.

-2 -1 -1 -1 2
1 3 1 1 -1
6. Let 4 =-1 -4 -2 -1 1|. Take X =[1,0,0,0,0].
-1 -4 -1 -2 1
-2 -2 -2 -2 3
Then X,AX =[-2,1,-1,-1,-2]", 4°X =[1,1,-1,~1,0) are linearly independent while A%X =

[-1.2,-2,-2,0]" = 242X - 3X and X belongs to X -22+3. We tentatively assume this to be the minimum
polynomial m(A) and label X as Xg.
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When, in A, the fourth column is subtracted from the first, we have [-1,0,0,1,0]"; hence, if ¥ =
(1,0,0,-1,0), AY =-Y and Y belongs to A+1. Again, when the fourth column of 4 is subtracted from
the third, we have [0,0, -1, 1,0]"; hence, if Z =[0,0,1,-1,0]", 4Z = -Z and Z belongs to A+1. Since
Y, Z, and the members of the chain led by X5 are linearly independent, we label Y as X, and Z as X5. When

0 1 1 =2 1 -1 0 0 O 0
0 00 1 1 0-100 0
R = [Xg Xu4XeAXs,AXs] = |1 0 0 -1 -1, R°MR = | o 0 0 -3
-1 -1 0 -1 -1 0 10 0
0 00 -2 0 0 00 1

the rational canonical form of 4.

SUPPLEMENTARY PROBLEMS

7. For each of the matrices (a)-(h) of Problem 9, Chapter 25, write the canonical matrix of Theorems I I, Ill
over the rational field, Can any of these matrices be changed by enlarging the number field?

0 10
Partial Ans. (@) I, |0 0 1), I IOl diag(1,2,3)
6 -11 6
D 1 0
(b LmmL jo o 1
0 0
0 0 0 0 0 O
(¢) L |o o 1|; mim |o o 0
0 0 4 0 0 4
-1 0 0 O 0 0 0
001 0 0 -1 0
(fHh L S 8 11 §
00 0 1 0 0 -1 0
0010 [o 0 0 1
0 0 0 O 00 0 0 00
00 1 0 00 0 00
() L N | 8 ; IH,
00 o0 1 00 0 1 0 0 -1
Loo—l—z] 0 0 —1 —2 00 0 -1
[2 0 0 0 ©
0 0100
M Lo 2 1 0 of; mom diag(2,2,2, -1, -1)
0 00 0 1
[0 0 0 2 1

8. Under what conditions will (a) the canonical forms of Theorems I and II be identical? (&) the canonical
forms of Theorems II and III be identical? (¢) the canonical form of Theorem II be diagonal?
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Check with the answer to Problem 8(b).

O o
o o o

o o o

9. Identify the canonical form [

(&) A2+ 1,

(@ A+1, A%+ 1, A%+ 12
Write the canonical forms of Theorems I, I, Il over the rational field and

10. Let the non-singular matrix 4 have non-trivial invariant factors

M+sX+4, X+ + 907+ 4

that of Theorem IV.

—
(1]
i
+
-4
=
~ley
1
Q.
3
)
-
[
=
B
I 1
[=J=} =] o - & o o o =] -
r 1 r 1
o o o o o o o o OQ_..,O o o - 1_;0000000013:
=} o o = © 0O 0o oo ooQe
o o =] =) e 8 o o o v [
o o o o oo o o oo o Qo o
| o o o =] 01_.0 o .ﬂ =]
©C 0O 0o o™ 8 oo o
o (=3} =)
o o [=) L] o o o - o =)
©C 0o 0o o8 o0 o o
o =3 ] ]
o o o vt R R S - o o
| [ ©C 0o o0 o Bo oo o o
=] (<} 4_
o o 9_~ o o o o o o o 0001.._..000000
o o o o
o o v~ [=) o o o o o ©O O O m e oo o oo o
(=] S o o | |
o 1_..0 001_. =] [ o o o o [=] 001_.00000000
L] o o o 9w o o o = N o o © ™o o o oo o oo o
! 1ol 'L ;oL
= = >
L] -
—_
5
N4
“»
2
-
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11. Prove: If with respect to an n-square matrix 4, the vector X belongs to g(A) then g(\) divides the minimum
polynomial m(A) of 4.

Hint. Suppose the contrary and consider m(A) = h(A)* g(A) + r(A).

12. In Example 6, show that X, AX, and Y are linearly independent and then reduce A4 to its rational canonical
form.

13. In Problem 6:

(a) Take Y =[0,1,0,0,0]", linearly independent of the chain led by X5, and obtain X4 = Y - (34 -2D) X5
belonging to A+1.

(b) Take Z =[0,0,1,0,0], linearly independent of X, and the chain led by Xs, and obtain X;=Z — X5
belonging to A +1.

(¢) Compute R 4R using the vectors X5 and X, of (b) and () to build R.

14. For each of the matrices 4 of Problem 9(a)-(h), Chapter 25, find R such that R_lAR is the rational canon-
ical form of 4.

15. Solve the system of linear differential equations

%’:—1 = 2%1 + xo + xg + x4 t 1
%2 = 4%y + 23 + 3x3

% = —6x; — 2x0 — 3x3 — 2x4
%‘ -3%1 - X% — xg — 2x4

where the x; are unknown functions of the real variable ¢.
dX _ [dx dxp dxa m]’

Hint. Let X =[x, x5, x5, x,), define X2 , and rewrite the system as

dt | dt dt dr de
2 1 1 1 t
. ix _ |4 2 3 o of
(l) Ti? = _§ -2 -3 -9 X + 0 = AX + H
-3 -1 -1 -2 0

Since the non-singular linear transformation X = RY carries (i) into
dy
dt

choose R so that R_*4R is the rational canonical form of 4. The elementary 4-vector E4 belonging to A°— A

is leader of the chain X; = E;, AX;. A®X, while E,yields X, = E, — Xy + 24X, belonging to A+1. Now

= RMRY + R'H

with
1 2 -1 3
0 -2 8
R = [Xy,4X,4%X, X =
(X, AX,, 4°Xs, Xe] c o
0 -3 2 -5
0 0 O 0 t t
ﬂ - 1 0 1 0 Y + 0 - y1+y3
dt 010 0 0 yo
0 0 0 -1 0 Y4
Then
Cq+ 31t2 2C + Coel+ 3(CotCpet+ 1221+ 1
v - Cod + Coet — ¢ and X = RY = 2C; +2Cet +2(3C5+4CHet + 2 _dr+ 2

—Cy + Coel — Coet = 3121 —4Cy — 2Coet — 2(5Ca+6CHEL — 202+ 6t ~ 4
Che? 2C, — Cpeb— 5(Ca+C)et — 2+ 31-2
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Gram-Schmidt process, 102, 111
Greatest common divisor, 173

INDEX

Hermitian form

canonical form of, 146

definite, 147

index of, 147

rank of, 146
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definition of, 149
of a diagonal matrix, 156
of an Hermitian matrix, 164
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of a real symmetric matrix, 163
of similar matrices, 156
Inverse of a (an)
diagonal matrix, 55
direct sum, 55
elementary transformation, 39
matrix, 11, 55
product of matrices, 11
symmetric matrix, 58
Involutory matrix, 11

Jacobson canonical form, 205
Jordan (classical) canonical form, 206

Kronecker's reduction, 136

Lagrange’s reduction, 132
Lambda matrix, 179
Laplace’s expansion, 33
Latent roots (vectors), 149
Leader of a chain, 207
Leading principal minors, 135
Left divisor, 180
Left inverse, 63
Linear combination of vectors, 68
Linear dependence (independence)
of forms, 70
of matrices, 73
of vectors, 68
Lower triangular matrix, 10

Matrices
congruent, 115
equal, 2
equivalent, 40
over a field, 65



Matrices (cont.)
product of, 3
scalar multiple of, 2
similar, 95, 156
square, 1
sum of, 2
Matrix
definition of, 1
derogatory, 197
diagonable, 157
diagonal, 10
elementary row (column), 41
elementary transformation of, 39
Hermitian, 13, 117, 164
idempotent, 11
inverse of, 11, 55
lambda, 179
nilpotent, 11
nonderogatory, 197
non-singular, 39
normal, 164
normal form of, 41
nullity of, 87
of a bilinear form, 125
of an Hermitian form, 146
of a quadratic form, 131
order of, 1
orthogonal, 103, 163
periodic, 11
permutation, 99
polynomial, 179
positive definite (semi-definite), 134, 147
rank of, 3
scalar, 10
singular, 39
skew-Hermitian, 13, 118
skew-symmetric, 12, 117
symmetrie, 12, 115, 163
triangular, 10, 157
unitary, 112, 164
Matrix Polynomial(s)
definition of, 179
degree of, 179
product of, 179
proper (improper), 179
scalar, 180
singular (non-singular), 179
sum of, 179
Minimum polynomial, 196
Multiplication
in partitioned form, 4
of matrices, 3

Negative

definite form (matrix), 134, 147

of a matrix, 2

semi-definite form (matrix), 134, 147
Nilpotent matrix, 11
Non-derogatory matrix, 197
Non-singular matrix, 39
Normal form of a matrix, 41
Normal matrix, 164
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Null space, 87
Nullity, 87
n-vector, 85

Order of a matrix, 1
Orthogonal
congruence, 163
equivalence, 163
matrix, 103
similarity, 157, 163
transformation, 103
vectors, 100, 110
Orthonormal basis, 102, 111

Partitioning of matrices, 4
Periodic matrix, 11
Permutation matrix, 99
Polynomial
domain, 172
matrix, 179
monic, 172
scalar, 172
scalar matrix, 180
Positive definite (semi-definite)
Hermitian forms, 147
matrices, 134, 147
quadratic forms, 134
Principal minor
definition of, 134
leading, 135
Product of matrices
adjoint of, 50
conjugate of, 13
determinant of, 33
inverse of, 11
rank of, 43
transpose of, 12

Quadratic form
canonical form of, 133, 134
definition of, 131
factorization of, 138
rank of, 131
reduction of
Kronecker, 136
Lagrange, 132
regular, 135
Quadratic form, real
definite, 134
index of, 133
semi-definite, 134
signature of, 133
Quadratic forms
equivalence of, 131, 133, 134

Rank
of adjoint, 50
of bilinear form, 125
of Hermitian form, 146
of matrix, 39
of product, 43
of quadratic form, 131
of sum, 48
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Right divisor, 180
Right inverse, 63
Root
of polynomial, 178
of scalar matrix polynomial, 187
Row
equivalent matrices, 40
space of a matrix, 93
transformation, 39

Scalar
matrix, 10
matrix polynomial, 180
multiple of a matrix, 2
polynomial, 172

product of two vectors (see inner product)

Schwarz Inequality, 101, 110
Secular equation (see
characteristic equation)

Signature

of Hermitian form, 147

of Hermitian matrix, 118

of real quadratic form, 133

of real symmetric matrix, 116
Similar matrices, 95, 196
Similarity invariants, 196
Singular matrix, 39
Skew-Hermitian matrix, 13, 118
Skew-symmetric matrix, 12, 117
Smith normal form, 188
Span, 85
Spectral decomposition, 170
Spur (see Trace)
Sub-matrix, 24
Sum of

matrices, 2

vector spaces, 87
Sylvester’s law

of inertia, 133

of nullity, 88
Symmetric matrix

characteristic roots of, 163

Symmetric matrix (cont.)
definition of, 12
invariant vectors of, 163

System(s) of Equations, 75

Trace, 1
Transformation
elementary, 39
linear, 94
orthogonal, 103
singular, 95
unitary, 112
Transpose
of a matrix, 11
of a product, 12
of a sum, 11
Triangular inequality, 101, 110
Triangular matrix, 10, 157

Unit vector, 101
Unitary
matrix, 112
similarity, 157
transformation, 112
Upper triangular matrix, 10

Vector(s)
belonging to a polynomial, 207
coordinates of, 88
definition of, 67
inner product of, 100
invariant, 149
length of, 100, 110
normalized, 102
orthogonal, 100
vector product of, 109
Vector space
basis of, 86
definition of, 85
dimension of, 86
over the complex field, 110
over the real field, 100



Symbol
aq
[aﬁ]
A
3
L1,
A_l. AI
a4 A
4; 4°
Z" A% AC’.T
|4|; det A
M,

J1. J20 oo dm
i, to hn, Ty

ozij
r

H; (k) K (k)
Hyjk), Ky

~

N
adj A

X, X,
%, (F)
Vi (Fy

Index of Symbols

Page

219

Symbol

Ei , (vector)

XY, XY
Il
G
XxY

p

s

h
XAy
¢ Q)
E;, (matrix)
fn
F[A]
A
ARGy, AL(C)
N
f; D
m(A)
Clg
J
S
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