A) Compruebe utilizando integración numérica que:

1.-
$$\int_{2}^{4} e^{\frac{1}{x}} dx = 2.835422295$$

$$2.-\int_{2}^{5} (e^{\sqrt{x}}) dx = 19.72293528$$

1.-
$$\int_{2}^{4} e^{\frac{1}{x}} dx = 2.835422295$$
 2.- $\int_{2}^{5} \left(e^{\sqrt{x}} \right) dx = 19.72293528$ 3.- $\int_{2}^{4} \frac{e^{x}}{x^{2}+1} dx = 4.237254481$

"h" no es constante!)

en los siguientes, aproveche trabajo anterior....
4.-
$$\int_0^3 \left(\int_2^4 e^{\frac{1}{x}} y dx \right) dy = 12.75940033$$
 5.- $\int_0^3 \left(\int_2^5 e^{\sqrt{x}} y dx \right) dy$ 6.- $\int_0^3 \left(\int_2^4 \frac{e^x}{x^2 + 1} y dx \right) dy$

$$5.- \int_0^3 \left(\int_2^5 e^{\sqrt{x}} y dx \right) dy$$

6.-
$$\int_0^3 \left(\int_2^4 \frac{e^x}{x^2 + 1} y dx \right) dy$$

Utilizando desarrollo de Taylor o MacLaurin según sea el caso integre en forma aproximada las siguientes.

$$7.-\int_2^4 e^{\frac{1}{x}} dx$$

8.-
$$\int_{2}^{5} (e^{\sqrt{x}}) dx$$
 y compare con los resultados 1) y 2) anteriores.

Calcule la integral en el dominio de definición de las siguientes funciones definidas por tablas:

Х	f(x)		х	g(x)	х	h(x)
$2 = \frac{6}{3}$	1. 535 063 009		1	2	0.5	6. 594 885 083
$\frac{7}{3}$			2	5	1	2. 718 281 829
8/3			3	10	2.5	1. 949 199 034
9/3	1. 395 612 425		4	17	4.0	3. 412 384 377
<u>10</u> 3	1. 349 858 808		5	26	4.5	4. 445 290 435
11/3	1. 313 541 957		6	37	5.0	5. 936 526 364
$4 = \frac{12}{3}$	1. 284 025 417		7	50	6.0	11. 206 355 38

- 9.- tomando n = 10 , calcular la constante de Katalan : $G=\int_0^1 rac{\arctan(x)dx}{x}$
- 10.- Sirviéndose de la fórmula : $\frac{\pi}{4} = \int_0^1 \frac{dx}{1+x^2}$, calcular el número π , con una exactitud de hasta 10^{-5}
- 11.- Calcular $\int_0^1 e^{x^2} dx$, con una exactitud de hasta 0,001
- 12.- Calcular $\int_0^1 (e^x 1) \ln(\frac{1}{x}) dx$, con una exactitud de hasta 10^{-4}
- 13.- Calcular con una exactitud de hasta 0,001,la integral de probabilidad: $\int_0^{+\infty} e^{-x^2} dx$
- 14.-Hallar aproximadamente la longitud de la elipse cuyos semi-ejes son: a= 10 y b = 6
- 15.- Construir por puntos la gráfica de la función : $y = \int_0^x \frac{\sin(t)dt}{t}$

en el intervalo : $0 \leq x \leq 2\pi$, tomando $\Delta x = \frac{\pi}{3}$

Sirviéndose de la fórmula de Simpson, calcular las integrales :

16.-
$$\int_0^9 \sqrt{x} \, dx$$
 (n = 6) 17.- $\int_0^\pi \sqrt{3 + \cos x} \, dx$ (n = 6)

18.-
$$\int_0^{\frac{\pi}{2}} \frac{\sin(x)}{x} dx$$
 (n = 10) 19.- $\int_0^1 \frac{x dx}{\ln(1+x)}$ (n=6)

2.- Evaluar la integral de la función dada por la tabla adjunta,entre x=0,2 y x= 1,2 . Esboce una gráfica para visualizar el

procedimiento.

Х	0.2	0.4	0.6	8.0	1.0	1.2	1.4
f(x)	2.6	3.2	3.8	4.4	5.0	5.6	6.2

3.- Evaluar la integral de la función dada por la tabla adjunta, entre x=0,4 y x= 2.0 . Esboce una gráfica para visualizar el

procedimiento.

							. *
Х	0.4	0.6	0.9	1.3	1.8	2.0	(¡ Cuidado,aquí
f(x)	0.8	1.8	4.05	8.45	16.2	20	(1 = 1 = 1 = 1 = 1 = 1 = 1